Do you want to publish a course? Click here

Decoding the radial velocity variations of HD41248 with ESPRESSO

89   0   0.0 ( 0 )
 Added by Jo\\~ao Faria
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Twenty-four years after the discoveries of the first exoplanets, the radial-velocity (RV) method is still one of the most productive techniques to detect and confirm exoplanets. But stellar magnetic activity can induce RV variations large enough to make it difficult to disentangle planet signals from the stellar noise. In this context, HD41248 is an interesting planet-host candidate, with RV observations plagued by activity-induced signals. We report on ESPRESSO observations of HD41248 and analyse them together with previous observations from HARPS with the goal of evaluating the presence of orbiting planets. Using different noise models within a general Bayesian framework designed for planet detection in RV data, we test the significance of the various signals present in the HD41248 dataset. We use Gaussian processes as well as a first-order moving average component to try to correct for activity-induced signals. At the same time, we analyse photometry from the TESS mission, searching for transits and rotational modulation in the light curve. The number of significantly detected Keplerian signals depends on the noise model employed, which can range from 0 with the Gaussian process model to 3 with a white noise model. We find that the Gaussian process alone can explain the RV data while allowing for the stellar rotation period and active region evolution timescale to be constrained. The rotation period estimated from the RVs agrees with the value determined from the TESS light curve. Based on the data that is currently available, we conclude that the RV variations of HD41248 can be explained by stellar activity (using the Gaussian process model) in line with the evidence from activity indicators and the TESS photometry.



rate research

Read More

gamma Draconis, a K5III star, showed radial velocity (RV) variations consistent with a 10.7 Jupiter mass planet from 2003-2011. After 2011, the periodic signal decayed, then reappeared with a phase shift. Hatzes et al. (2018) suggested that gamma Dras RV variations could come from oscillatory convective modes, but did not fit a mathematical model. Here we assess whether a quasi-periodic Gaussian process (GP)---appropriate when spots with finite lifetimes trace underlying periodicity---can explain the RVs. We find that a model with only one quasiperiodic signal is not adequate: we require a second component to fit the data. The best-fit model has quasi-periodic oscillations with P1 = 705 days and P2 = 15 days. The 705-day signal may be caused by magnetic activity. The 15-day period requires further investigation.
The Sun is the only star whose surface can be directly resolved at high resolution, and therefore constitutes an excellent test case to explore the physical origin of stellar radial-velocity (RV) variability. We present HARPS observations of sunlight scattered off the bright asteroid 4/Vesta, from which we deduced the Suns activity-driven RV variations. In parallel, the HMI instrument onboard the Solar Dynamics Observatory provided us with simultaneous high spatial resolution magnetograms, Dopplergrams, and continuum images of the Sun in the Fe I 6173A line. We determine the RV modulation arising from the suppression of granular blueshift in magnetised regions and the flux imbalance induced by dark spots and bright faculae. The rms velocity amplitudes of these contributions are 2.40 m/s and 0.41 m/s, respectively, which confirms that the inhibition of convection is the dominant source of activity-induced RV variations at play, in accordance with previous studies. We find the Doppler imbalances of spot and plage regions to be only weakly anticorrelated. Lightcurves can thus only give incomplete predictions of convective blueshift suppression. We must instead seek proxies that track the plage coverage on the visible stellar hemisphere directly. The chromospheric flux index R_HK derived from the HARPS spectra performs poorly in this respect, possibly because of the differences in limb brightening/darkening in the chromosphere and photosphere. We also find that the activity-driven RV variations of the Sun are strongly correlated with its full-disc magnetic flux density, which may become a useful proxy for activity-related RV noise.
We conducted speckle imaging observations of 53 stellar systems that were members of long-term radial velocity (RV) monitoring campaigns and exhibited substantial accelerations indicative of planetary or stellar companions in wide orbits. Our observations were made with blue and red filters using the Differential Speckle Survey Instrument at Gemini-South and the NN-Explore Exoplanet Stellar Speckle Imager at the WIYN telescope. The speckle imaging identifies eight luminous companions within two arcseconds of the primary stars. In three of these systems (HD 1388, HD 87359, and HD 104304), the properties of the imaged companion are consistent with the RV measurements, suggesting that these companions may be associated with the primary and the cause of the RV variation. For all 53 stellar systems, we derive differential magnitude limits (i.e., contrast curves) from the imaging. We extend this analysis to include upper limits on companion mass in systems without imaging detections. In 25 systems, we rule out companions with mass greater than 0.2 $M_{odot}$, suggesting that the observed RV signals are caused by late M dwarfs or substellar (potentially planetary) objects. On the other hand, the joint RV and imaging analysis almost entirely rules out planetary explanations of the RV signal for HD 19522 and suggests that the companion must have an angular separation below a few tenths of an arcsecond. This work highlights the importance of combined RV and imaging observations for characterizing the outer regions of nearby planetary systems.
High resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from low resolution studies. Through spectral synthesis and modeling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of H,I, Fe,I, Mg,I, Ca,I, Na,I and K,I neutral species, placing upper limits on their line contrasts. Through cross correlation analyses with atmospheric models, we do not detect Fe,I and place a 3$sigma$ upper limit of $log,(X_{textrm{Fe}}/X_odot) approx -1.83,pm,0.11$ on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H$_2$O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02,$pm$,0.15,$sigma$) in the cross correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does textit{not} constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a $sim$,100$times$ sub-solar TiO abundance, precisely constrained to $log,X_{textrm{TiO}} approx -7.52 pm 0.38$, consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results.
A radial velocity (RV) survey for intermediate-mass giants has been operated for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations or six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to $gamma$ Hya B ($0.61^{+0.12}_{-0.14} M_odot$), HD 5608 B ($0.10 pm 0.01 M_odot$), and HD 109272 B ($0.28 pm 0.06 M_odot$). For the remaining targets($iota$ Dra, 18 Del, and HD 14067) we exclude companions more massive than 30-60 $M_mathrm{Jup}$ at projected separations of 1arcsec-7arcsec. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets $iota$ Dra b, HD 5608 b, and HD 14067 b.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا