Do you want to publish a course? Click here

Hearing Lips: Improving Lip Reading by Distilling Speech Recognizers

80   0   0.0 ( 0 )
 Added by Ya Zhao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Lip reading has witnessed unparalleled development in recent years thanks to deep learning and the availability of large-scale datasets. Despite the encouraging results achieved, the performance of lip reading, unfortunately, remains inferior to the one of its counterpart speech recognition, due to the ambiguous nature of its actuations that makes it challenging to extract discriminant features from the lip movement videos. In this paper, we propose a new method, termed as Lip by Speech (LIBS), of which the goal is to strengthen lip reading by learning from speech recognizers. The rationale behind our approach is that the features extracted from speech recognizers may provide complementary and discriminant clues, which are formidable to be obtained from the subtle movements of the lips, and consequently facilitate the training of lip readers. This is achieved, specifically, by distilling multi-granularity knowledge from speech recognizers to lip readers. To conduct this cross-modal knowledge distillation, we utilize an efficacious alignment scheme to handle the inconsistent lengths of the audios and videos, as well as an innovative filtering strategy to refine the speech recognizers prediction. The proposed method achieves the new state-of-the-art performance on the CMLR and LRS2 datasets, outperforming the baseline by a margin of 7.66% and 2.75% in character error rate, respectively.



rate research

Read More

Speaker extraction algorithm emulates humans ability of selective attention to extract the target speakers speech from a multi-talker scenario. It requires an auxiliary stimulus to form the top-down attention towards the target speaker. It has been well studied to use a reference speech as the auxiliary stimulus. Visual cues also serve as an informative reference for human listening. They are particularly useful in the presence of acoustic noise and interference speakers. We believe that the temporal synchronization between speech and its accompanying lip motion is a direct and dominant audio-visual cue. In this work, we aim to emulate humans ability of visual attention for speaker extraction based on speech-lip synchronization. We propose a self-supervised pre-training strategy, to exploit the speech-lip synchronization in a multi-talker scenario. We transfer the knowledge from the pre-trained model to a speaker extraction network. We show that the proposed speaker extraction network outperforms various competitive baselines in terms of signal quality and perceptual evaluation, achieving state-of-the-art performance.
This paper proposes a novel lip-reading driven deep learning framework for speech enhancement. The proposed approach leverages the complementary strengths of both deep learning and analytical acoustic modelling (filtering based approach) as compared to recently published, comparatively simpler benchmark approaches that rely only on deep learning. The proposed audio-visual (AV) speech enhancement framework operates at two levels. In the first level, a novel deep learning-based lip-reading regression model is employed. In the second level, lip-reading approximated clean-audio features are exploited, using an enhanced, visually-derived Wiener filter (EVWF), for the clean audio power spectrum estimation. Specifically, a stacked long-short-term memory (LSTM) based lip-reading regression model is designed for clean audio features estimation using only temporal visual features considering different number of prior visual frames. For clean speech spectrum estimation, a new filterbank-domain EVWF is formulated, which exploits estimated speech features. The proposed EVWF is compared with conventional Spectral Subtraction and Log-Minimum Mean-Square Error methods using both ideal AV mapping and LSTM driven AV mapping. The potential of the proposed speech enhancement framework is evaluated under different dynamic real-world commercially-motivated scenarios (e.g. cafe, public transport, pedestrian area) at different SNR levels (ranging from low to high SNRs) using benchmark Grid and ChiME3 corpora. For objective testing, perceptual evaluation of speech quality is used to evaluate the quality of restored speech. For subjective testing, the standard mean-opinion-score method is used with inferential statistics. Comparative simulation results demonstrate significant lip-reading and speech enhancement improvement in terms of both speech quality and speech intelligibility.
Our objective is an audio-visual model for separating a single speaker from a mixture of sounds such as other speakers and background noise. Moreover, we wish to hear the speaker even when the visual cues are temporarily absent due to occlusion. To this end we introduce a deep audio-visual speech enhancement network that is able to separate a speakers voice by conditioning on both the speakers lip movements and/or a representation of their voice. The voice representation can be obtained by either (i) enrollment, or (ii) by self-enrollment -- learning the representation on-the-fly given sufficient unobstructed visual input. The model is trained by blending audios, and by introducing artificial occlusions around the mouth region that prevent the visual modality from dominating. The method is speaker-independent, and we demonstrate it on real examples of speakers unheard (and unseen) during training. The method also improves over previous models in particular for cases of occlusion in the visual modality.
The goal of this work is to train strong models for visual speech recognition without requiring human annotated ground truth data. We achieve this by distilling from an Automatic Speech Recognition (ASR) model that has been trained on a large-scale audio-only corpus. We use a cross-modal distillation method that combines Connectionist Temporal Classification (CTC) with a frame-wise cross-entropy loss. Our contributions are fourfold: (i) we show that ground truth transcriptions are not necessary to train a lip reading system; (ii) we show how arbitrary amounts of unlabelled video data can be leveraged to improve performance; (iii) we demonstrate that distillation significantly speeds up training; and, (iv) we obtain state-of-the-art results on the challenging LRS2 and LRS3 datasets for training only on publicly available data.
129 - Chenhao Wang 2019
Lip-reading aims to recognize speech content from videos via visual analysis of speakers lip movements. This is a challenging task due to the existence of homophemes-words which involve identical or highly similar lip movements, as well as diverse lip appearances and motion patterns among the speakers. To address these challenges, we propose a novel lip-reading model which captures not only the nuance between words but also styles of different speakers, by a multi-grained spatio-temporal modeling of the speaking process. Specifically, we first extract both frame-level fine-grained features and short-term medium-grained features by the visual front-end, which are then combined to obtain discriminative representations for words with similar phonemes. Next, a bidirectional ConvLSTM augmented with temporal attention aggregates spatio-temporal information in the entire input sequence, which is expected to be able to capture the coarse-gained patterns of each word and robust to various conditions in speaker identity, lighting conditions, and so on. By making full use of the information from different levels in a unified framework, the model is not only able to distinguish words with similar pronunciations, but also becomes robust to appearance changes. We evaluate our method on two challenging word-level lip-reading benchmarks and show the effectiveness of the proposed method, which also demonstrate the above claims.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا