Do you want to publish a course? Click here

A Binary Particle Swarm Optimization Approach for Gene Expression Biclustering Problem

129   0   0.0 ( 0 )
 Publication date 2019
  fields Biology
and research's language is English




Ask ChatGPT about the research

Microarray techniques are widely used in Gene expression analysis. These techniques are based on discovering submatrices of genes that share similar expression patterns across a set of experimental conditions with coherence constraint. Actually, these submatrices are called biclusters and the extraction process is called biclustering. In this paper we present a novel binary particle swarm optimization model for the gene expression biclustering problem. Hence, we apply the binary particle swarm optimization algorithm with a proposed measure, called Discretized Column-based Measure (DCM) as a novel cost function for evaluating biclusters where biological relevance, MSR and the size of the bicluster are considered as evaluation metrics for our results. Results are compared to the existing algorithms and they show the validity of our proposed approach.



rate research

Read More

Complex biological functions are carried out by the interaction of genes and proteins. Uncovering the gene regulation network behind a function is one of the central themes in biology. Typically, it involves extensive experiments of genetics, biochemistry and molecular biology. In this paper, we show that much of the inference task can be accomplished by a deep neural network (DNN), a form of machine learning or artificial intelligence. Specifically, the DNN learns from the dynamics of the gene expression. The learnt DNN behaves like an accurate simulator of the system, on which one can perform in-silico experiments to reveal the underlying gene network. We demonstrate the method with two examples: biochemical adaptation and the gap-gene patterning in fruit fly embryogenesis. In the first example, the DNN can successfully find the two basic network motifs for adaptation - the negative feedback and the incoherent feed-forward. In the second and much more complex example, the DNN can accurately predict behaviors of essentially all the mutants. Furthermore, the regulation network it uncovers is strikingly similar to the one inferred from experiments. In doing so, we develop methods for deciphering the gene regulation network hidden in the DNN black box. Our interpretable DNN approach should have broad applications in genotype-phenotype mapping.
77 - Olga Zolotareva 2020
Aggregating transcriptomics data across hospitals can increase sensitivity and robustness of differential expression analyses, yielding deeper clinical insights. As data exchange is often restricted by privacy legislation, meta-analyses are frequently employed to pool local results. However, if class labels are inhomogeneously distributed between cohorts, their accuracy may drop. Flimma (https://exbio.wzw.tum.de/flimma/) addresses this issue by implementing the state-of-the-art workflow limma voom in a privacy-preserving manner, i.e. patient data never leaves its source site. Flimma results are identical to those generated by limma voom on combined datasets even in imbalanced scenarios where meta-analysis approaches fail.
In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption -Markov property- and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model.
With the wealth of high-throughput sequencing data generated by recent large-scale consortia, predictive gene expression modelling has become an important tool for integrative analysis of transcriptomic and epigenetic data. However, sequencing data-sets are characteristically large, and previously modelling frameworks are typically inefficient and unable to leverage multi-core or distributed processing architectures. In this study, we detail an efficient and parallelised MapReduce implementation of gene expression modelling. We leverage the computational efficiency of this framework to provide an integrative analysis of over fifty histone modification data-sets across a variety of cancerous and non-cancerous cell-lines. Our results demonstrate that the genome-wide relationships between histone modifications and mRNA transcription are lineage, tissue and karyotype-invariant, and that models trained on matched epigenetic/transcriptomic data from non-cancerous cell-lines are able to predict cancerous expression with equivalent genome-wide fidelity.
In many situations, the gene expression signature is a unique marker of the biological state. We study the modification of the gene expression distribution function when the biological state of a system experiences a change. This change may be the result of a selective pressure, as in the Long Term Evolution Experiment with E. Coli populations, or the progression to Alzheimer disease in aged brains, or the progression from a normal tissue to the cancer state. The first two cases seem to belong to a class of transitions, where the initial and final states are relatively close to each other, and the distribution function for the differential expressions is short ranged, with a tail of only a few dozens of strongly varying genes. In the latter case, cancer, the initial and final states are far apart and separated by a low-fitness barrier. The distribution function shows a very heavy tail, with thousands of silenced and over-expressed genes. We characterize the biological states by means of their principal component representations, and the expression distribution functions by their maximal and minimal differential expression values and the exponents of the Pareto laws describing the tails.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا