Do you want to publish a course? Click here

Strong cosmic censorship for a scalar field in an Einstein-Maxwell-Gauss-Bonnet-de Sitter black hole

79   0   0.0 ( 0 )
 Added by Qingyu Gan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been shown that the Christodoulou version of the Strong Cosmic Censorship (SCC) conjecture can be violated for a scalar field in a near-extremal Reissner-Nordstrom-de Sitter black hole. In this paper, we investigate the effects of higher derivative corrections to the Einstein-Hilbert action on the validity of SCC, by considering a neutral massless scalar perturbation in 5- and 6-dimensional Einstein-Maxwell-Gauss-Bonnet-de Sitter black holes. Our numerical results exhibit that the higher derivative term plays a different role in the d = 5 case than it does in the d = 6 case. For d = 5, the SCC violation region increases as the strength of the higher derivative term increases. For d = 6, the SCC violation region first increases and then decreases as the higher derivative correction becomes stronger, and SCC can always be restored for a black hole with a fixed charge ratio when the higher derivative correction is strong enough. Finally, we find that the C2 version of SCC is respected in the d = 6 case, but can be violated in some near-extremal regime in the d = 5 case.



rate research

Read More

It has been shown recently that the strong cosmic censorship conjecture is violated by near-extremal Reissner-Nordstrom-de Sitter black holes. We investigate whether the introduction of a charged scalar field can rescue strong cosmic censorship. We find that such a field improves the situation but there is always a neighbourhood of extremality in which strong cosmic censorship is violated by perturbations arising from smooth initial data.
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordstrom-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any non-extremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
We study the linear instability of the charged massless scalar perturbation in regularized 4D charged Einstein-Gauss-Bonnet-AdS black holes by exploring the quasinormal modes. We find that the linear instability is triggered by superradiance. The charged massless scalar perturbation becomes more unstable when increasing the Gauss-Bonnet coupling constant or the black hole charge. Meanwhile, decreasing} the AdS radius will make the charged massless scalar perturbation} more stable. The stable region in parameter space $(alpha,Q,Lambda)$ is given. Moreover, we find that the charged massless scalar perturbation is more unstable for larger scalar charge. The modes of multipoles are more stable than that of the monopole.
In this paper, we study spontaneous scalarization of asymptotically anti-de Sitter charged black holes in the Einstein-Maxwell-scalar model with a non-minimal coupling between the scalar and Maxwell fields. In this model, Reissner-Nordstrom-AdS (RNAdS) black holes are scalar-free black hole solutions, and may induce scalarized black holes due to the presence of a tachyonic instability of the scalar field near the event horizon. For RNAdS and scalarized black hole solutions, we investigate the domain of existence, perturbative stability against spherical perturbations and phase structure. In a micro-canonical ensemble, scalarized solutions are always thermodynamically preferred over RNAdS black holes. However, the system has much rich phase structure and phase transitions in a canonical ensemble. In particular, we report a RNAdS BH/scalarized BH/RNAdS BH reentrant phase transition, which is composed of a zeroth-order phase transition and a second-order one.
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. In the uncharged case, we find both Hawking-Page and small-to-large black hole phase transitions, whose character depends on the sign of the Gauss-Bonnet coupling. In the charged case, we demonstrate the presence of a swallowtube, signaling a compact region in phase space where a small-to-large black hole transition occurs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا