No Arabic abstract
Multiplex networks are convenient mathematical representations for many real-world -- biological, social, and technological -- systems of interacting elements, where pairwise interactions among elements have different flavors. Previous studies pointed out that real-world multiplex networks display significant inter-layer correlations -- degree-degree correlation, edge overlap, node similarities -- able to make them robust against random and targeted failures of their individual components. Here, we show that inter-layer correlations are important also in the characterization of their $mathbf{k}$-core structure, namely the organization in shells of nodes with increasingly high degree. Understanding $k$-core structures is important in the study of spreading processes taking place on networks, as for example in the identification of influential spreaders and the emergence of localization phenomena. We find that, if the degree distribution of the network is heterogeneous, then a strong $mathbf{k}$-core structure is well predicted by significantly positive degree-degree correlations. However, if the network degree distribution is homogeneous, then strong $mathbf{k}$-core structure is due to positive correlations at the level of node similarities. We reach our conclusions by analyzing different real-world multiplex networks, introducing novel techniques for controlling inter-layer correlations of networks without changing their structure, and taking advantage of synthetic network models with tunable levels of inter-layer correlations.
Recent approaches on elite identification highlighted the important role of {em intermediaries}, by means of a new definition of the core of a multiplex network, the {em generalised} $K$-core. This newly introduced core subgraph crucially incorporates those individuals who, in spite of not being very connected, maintain the cohesiveness and plasticity of the core. Interestingly, it has been shown that the performance on elite identification of the generalised $K$-core is sensibly better that the standard $K$-core. Here we go further: Over a multiplex social system, we isolate the community structure of the generalised $K$-core and we identify the weakly connected regions acting as bridges between core communities, ensuring the cohesiveness and connectivity of the core region. This gluing region is the {em Weak core} of the multiplex system. We test the suitability of our method on data from the society of 420.000 players of the Massive Multiplayer Online Game {em Pardus}. Results show that the generalised $K$-core displays a clearly identifiable community structure and that the weak core gluing the core communities shows very low connectivity and clustering. Nonetheless, despite its low connectivity, the weak core forms a unique, cohesive structure. In addition, we find that members populating the weak core have the best scores on social performance, when compared to the other elements of the generalised $K$-core. The weak core provides a new angle on understanding the social structure of elites, highlighting those subgroups of individuals whose role is to glue different communities in the core.
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.
The organisation of a network in a maximal set of nodes having at least $k$ neighbours within the set, known as $k$-core decomposition, has been used for studying various phenomena. It has been shown that nodes in the innermost $k$-shells play a crucial role in contagion processes, emergence of consensus, and resilience of the system. It is known that the $k$-core decomposition of many empirical networks cannot be explained by the degree of each node alone, or equivalently, random graph models that preserve the degree of each node (i.e., configuration model). Here we study the $k$-core decomposition of some empirical networks as well as that of some randomised counterparts, and examine the extent to which the $k$-shell structure of the networks can be accounted for by the community structure. We find that preserving the community structure in the randomisation process is crucial for generating networks whose $k$-core decomposition is close to the empirical one. We also highlight the existence, in some networks, of a concentration of the nodes in the innermost $k$-shells into a small number of communities.
Many real-world networks are coupled together to maintain their normal functions. Here we study the robustness of multiplex networks with interdependent and interconnected links under k-core percolation, where a node fails when it connects to a threshold of less than k neighbors. By deriving the self-consistency equations, we solve the key quantities of interests such as the critical threshold and size of the giant component analytically and validate the theoretical results with numerical simulations. We find a rich phase transition phenomenon as we tune the inter-layer coupling strength. Specifically speaking, in the ER-ER multiplex networks, with the increase of coupling strength, the size of the giant component in each layer first undergoes a first-order transition and then a second-order transition and finally a first-order transition. This is due to the nature of inter-layer links with both connectivity and dependency simultaneously. The system is more robust if the dependency on the initial robust network is strong and more vulnerable if the dependency on the initial attacked network is strong. These effects are even amplified in the cascading process. When applying our model to the SF-SF multiplex networks, the type of transition changes. The system undergoes a first-order phase transition first only when the two layers mutually coupling is very strong and a second-order transition in other conditions.
The characterization of various properties of real-world systems requires the knowledge of the underlying network of connections among the systems components. Unfortunately, in many situations the complete topology of this network is empirically inaccessible, and one has to resort to probabilistic techniques to infer it from limited information. While network reconstruction methods have reached some degree of maturity in the case of single-layer networks (where nodes can be connected only by one type of links), the problem is practically unexplored in the case of multiplex networks, where several interdependent layers, each with a different type of links, coexist. Even the most advanced network reconstruction techniques, if applied to each layer separately, fail in replicating the observed inter-layer dependencies making up the whole coupled multiplex. Here we develop a methodology to reconstruct a class of correlated multiplexes which includes the World Trade Multiplex as a specific example we study in detail. Our method starts from any reconstruction model that successfully reproduces some desired marginal properties, including node strengths and/or node degrees, of each layer separately. It then introduces the minimal dependency structure required to replicate an additional set of higher-order properties that quantify the portion of each nodes degree and each nodes strength that is shared and/or reciprocated across pairs of layers. These properties are found to provide empirically robust measures of inter-layer coupling. Our method allows joint multi-layer connection probabilities to be reliably reconstructed from marginal ones, effectively bridging the gap between single-layer properties and truly multiplex information.