Do you want to publish a course? Click here

Multi-Agent Game Abstraction via Graph Attention Neural Network

123   0   0.0 ( 0 )
 Added by Weixun Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In large-scale multi-agent systems, the large number of agents and complex game relationship cause great difficulty for policy learning. Therefore, simplifying the learning process is an important research issue. In many multi-agent systems, the interactions between agents often happen locally, which means that agents neither need to coordinate with all other agents nor need to coordinate with others all the time. Traditional methods attempt to use pre-defined rules to capture the interaction relationship between agents. However, the methods cannot be directly used in a large-scale environment due to the difficulty of transforming the complex interactions between agents into rules. In this paper, we model the relationship between agents by a complete graph and propose a novel game abstraction mechanism based on two-stage attention network (G2ANet), which can indicate whether there is an interaction between two agents and the importance of the interaction. We integrate this detection mechanism into graph neural network-based multi-agent reinforcement learning for conducting game abstraction and propose two novel learning algorithms GA-Comm and GA-AC. We conduct experiments in Traffic Junction and Predator-Prey. The results indicate that the proposed methods can simplify the learning process and meanwhile get better asymptotic performance compared with state-of-the-art algorithms.



rate research

Read More

Joint attention - the ability to purposefully coordinate attention with another agent, and mutually attend to the same thing -- is a critical component of human social cognition. In this paper, we ask whether joint attention can be useful as a mechanism for improving multi-agent coordination and social learning. We first develop deep reinforcement learning (RL) agents with a recurrent visual attention architecture. We then train agents to minimize the difference between the attention weights that they apply to the environment at each timestep, and the attention of other agents. Our results show that this joint attention incentive improves agents ability to solve difficult coordination tasks, by reducing the exponential cost of exploring the joint multi-agent action space. Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments. Further, we show that joint attention enhances agents ability to learn from experts present in their environment, even when completing hard exploration tasks that do not require coordination. Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.
This paper considers predicting future statuses of multiple agents in an online fashion by exploiting dynamic interactions in the system. We propose a novel collaborative prediction unit (CoPU), which aggregates the predictions from multiple collaborative predictors according to a collaborative graph. Each collaborative predictor is trained to predict the status of an agent by considering the impact of another agent. The edge weights of the collaborative graph reflect the importance of each predictor. The collaborative graph is adjusted online by multiplicative update, which can be motivated by minimizing an explicit objective. With this objective, we also conduct regret analysis to indicate that, along with training, our CoPU achieves similar performance with the best individual collaborative predictor in hindsight. This theoretical interpretability distinguishes our method from many other graph networks. To progressively refine predictions, multiple CoPUs are stacked to form a collaborative graph neural network. Extensive experiments are conducted on three tasks: online simulated trajectory prediction, online human motion prediction and online traffic speed prediction, and our methods outperform state-of-the-art works on the three tasks by 28.6%, 17.4% and 21.0% on average, respectively.
The MAPF problem is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses and autonomous vehicles. Research on MAPF has been flourishing in the past couple of years. Different MAPF research papers make different assumptions, e.g., whether agents can traverse the same road at the same time, and have different objective functions, e.g., minimize makespan or sum of agents actions costs. These assumptions and objectives are sometimes implicitly assumed or described informally. This makes it difficult to establish appropriate baselines for comparison in research papers, as well as making it difficult for practitioners to find the papers relevant to their concrete application. This paper aims to fill this gap and support researchers and practitioners by providing a unifying terminology for describing common MAPF assumptions and objectives. In addition, we also provide pointers to two MAPF benchmarks. In particular, we introduce a new grid-based benchmark for MAPF, and demonstrate experimentally that it poses a challenge to contemporary MAPF algorithms.
We present a scalable tree search planning algorithm for large multi-agent sequential decision problems that require dynamic collaboration. Teams of agents need to coordinate decisions in many domains, but naive approaches fail due to the exponential growth of the joint action space with the number of agents. We circumvent this complexity through an anytime approach that allows us to trade computation for approximation quality and also dynamically coordinate actions. Our algorithm comprises three elements: online planning with Monte Carlo Tree Search (MCTS), factored representations of local agent interactions with coordination graphs, and the iterative Max-Plus method for joint action selection. We evaluate our approach on the benchmark SysAdmin domain with static coordination graphs and achieve comparable performance with much lower computation cost than our MCTS baselines. We also introduce a multi-drone delivery domain with dynamic, i.e., state-dependent coordination graphs, and demonstrate how our approach scales to large problems on this domain that are intractable for other MCTS methods. We provide an open-source implementation of our algorithm at https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.
Graph Attention Network (GAT) focuses on modelling simple undirected and single relational graph data only. This limits its ability to deal with more general and complex multi-relational graphs that contain entities with directed links of different labels (e.g., knowledge graphs). Therefore, directly applying GAT on multi-relational graphs leads to sub-optimal solutions. To tackle this issue, we propose r-GAT, a relational graph attention network to learn multi-channel entity representations. Specifically, each channel corresponds to a latent semantic aspect of an entity. This enables us to aggregate neighborhood information for the current aspect using relation features. We further propose a query-aware attention mechanism for subsequent tasks to select useful aspects. Extensive experiments on link prediction and entity classification tasks show that our r-GAT can model multi-relational graphs effectively. Also, we show the interpretability of our approach by case study.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا