No Arabic abstract
For most intelligent assistant systems, it is essential to have a mechanism that detects out-of-domain (OOD) utterances automatically to handle noisy input properly. One typical approach would be introducing a separate class that contains OOD utterance examples combined with in-domain text samples into the classifier. However, since OOD utterances are usually unseen to the training datasets, the detection performance largely depends on the quality of the attached OOD text data with restricted sizes of samples due to computing limits. In this paper, we study how augmented OOD data based on sampling impact OOD utterance detection with a small sample size. We hypothesize that OOD utterance samples chosen randomly can increase the coverage of unknown OOD utterance space and enhance detection accuracy if they are more dispersed. Experiments show that given the same dataset with the same OOD sample size, the OOD utterance detection performance improves when OOD samples are more spread-out.
Word clusters have been empirically shown to offer important performance improvements on various tasks. Despite their importance, their incorporation in the standard pipeline of feature engineering relies more on a trial-and-error procedure where one evaluates several hyper-parameters, like the number of clusters to be used. In order to better understand the role of such features we systematically evaluate their effect on four tasks, those of named entity segmentation and classification as well as, those of five-point sentiment classification and quantification. Our results strongly suggest that cluster membership features improve the performance.
Learning word embeddings has received a significant amount of attention recently. Often, word embeddings are learned in an unsupervised manner from a large collection of text. The genre of the text typically plays an important role in the effectiveness of the resulting embeddings. How to effectively train word embedding models using data from different domains remains a problem that is underexplored. In this paper, we present a simple yet effective method for learning word embeddings based on text from different domains. We demonstrate the effectiveness of our approach through extensive experiments on various down-stream NLP tasks.
Intent classification is a major task in spoken language understanding (SLU). Since most models are built with pre-collected in-domain (IND) training utterances, their ability to detect unsupported out-of-domain (OOD) utterances has a critical effect in practical use. Recent works have shown that using extra data and labels can improve the OOD detection performance, yet it could be costly to collect such data. This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection. Our method designs a novel domain-regularized module (DRM) to reduce the overconfident phenomenon of a vanilla classifier, achieving a better generalization in both cases. Besides, DRM can be used as a drop-in replacement for the last layer in any neural network-based intent classifier, providing a low-cost strategy for a significant improvement. The evaluation on four datasets shows that our method built on BERT and RoBERTa models achieves state-of-the-art performance against existing approaches and the strong baselines we created for the comparisons.
QA models based on pretrained language mod-els have achieved remarkable performance on various benchmark datasets.However, QA models do not generalize well to unseen data that falls outside the training distribution, due to distributional shifts.Data augmentation (DA) techniques which drop/replace words have shown to be effective in regularizing the model from overfitting to the training data.Yet, they may adversely affect the QA tasks since they incur semantic changes that may lead to wrong answers for the QA task. To tackle this problem, we propose a simple yet effective DA method based on a stochastic noise generator, which learns to perturb the word embedding of the input questions and context without changing their semantics. We validate the performance of the QA models trained with our word embedding perturbation on a single source dataset, on five different target domains.The results show that our method significantly outperforms the baselineDA methods. Notably, the model trained with ours outperforms the model trained with more than 240K artificially generated QA pairs.
Recent studies have introduced methods for learning acoustic word embeddings (AWEs)---fixed-size vector representations of words which encode their acoustic features. Despite the widespread use of AWEs in speech processing research, they have only been evaluated quantitatively in their ability to discriminate between whole word tokens. To better understand the applications of AWEs in various downstream tasks and in cognitive modeling, we need to analyze the representation spaces of AWEs. Here we analyze basic properties of AWE spaces learned by a sequence-to-sequence encoder-decoder model in six typologically diverse languages. We first show that these AWEs preserve some information about words absolute duration and speaker. At the same time, the representation space of these AWEs is organized such that the distance between words embeddings increases with those words phonetic dissimilarity. Finally, the AWEs exhibit a word onset bias, similar to patterns reported in various studies on human speech processing and lexical access. We argue this is a promising result and encourage further evaluation of AWEs as a potentially useful tool in cognitive science, which could provide a link between speech processing and lexical memory.