No Arabic abstract
Predicting the dramatic changes in material properties caused by irradiation damage is key for the design of future nuclear fission and fusion reactors. Self-ion implantation is an attractive tool for mimicking the effects of neutron irradiation. However, the damaged layer of implanted samples is only few microns thick, making it difficult to estimate macroscopic properties. Here we address this challenge using a combination of experimental and modelling techniques. We concentrate on self-ion-implanted tungsten, the front-runner for fusion armour components and a prototypical bcc material. To capture dose-dependent evolution of properties, we experimentally characterise samples with damage levels from 0.01 to 1 dpa. Spherical nano-indentation of <001> grains shows hardness increasing up to a dose of 0.032 dpa, beyond which it saturates. AFM measurements show pile-up increasing up to the same dose, beyond which large pile-up and slip-steps are seen. Based on the observations we develop a crystal plasticity (CPFE) model for the irradiated material. It captures irradiation-induced hardening followed by strain-softening through interaction of irradiation-defects and gliding dislocations. Shear resistance of irradiation-defects is derived from TEM observations of similarly irradiated samples. Nano-indentation of pristine and implanted tungsten of doses 0.01, 0.1, 0.32 and 1 dpa is simulated. Two model parameters are fitted to the experimental results of the 0.01 dpa sample and are kept unchanged for all other doses. Peak load, indent surface profiles and damage saturation predicted by the CPFE model closely match experimental observations. Predicted lattice distortions and dislocation distributions around indents agree with corresponding measurements from HR-EBSD. Finally, the CPFE model is used to predict the macroscopic stress-strain response of similarly irradiated bulk tungsten material.
Understanding defect production and evolution under irradiation is a long-standing multi-scale problem. Conventionally, experimental examination of irradiation-induced defects (IIDs) has mainly relied on transmission electron microscopy (TEM), which offers high spatial resolution but requires destructive sample preparation. Furthermore, limited field of view and low strain sensitivity make multi-scale characterisation and quantitative strain measurements difficult. Here we explore the potential of using advanced techniques in the scanning electron microscope (SEM) to non-destructively probe irradiation damage at the surface of bulk materials. Electron channelling contrast imaging (ECCI) is used to image nano-scale irradiation-induced defects in 20 MeV self-ion irradiated tungsten, the main candidate material for fusion reactor armour. The results show an evolution of the damage microstructure from uniformly and randomly distributed nano-scale defects at 0.01 dpa (displacement per atom) to string structures extending over hundreds of nanometres at 1 dpa. Cross-correlation based high-resolution EBSD (HR-EBSD) is used to probe the lattice strain fields associated with IIDs. While there is little strain fluctuation at 0.01 dpa, significant heterogeneity in the lattice strains is observed at 0.1 dpa, increasing with dose until saturation at 0.32 dpa. The characteristic length scale of strain fluctuations is ~500 nm. Together, ECCI and HR-EBSD reveal a transition from a structure where defects are disordered to a structure with long-range order driven by elastic interactions between pre-existing defects and new cascade damage. This study demonstrates that SEM provides an attractive tool for rapid throughput, non-destructive, multi-scale and multi-aspect characterisation of irradiation damage.
Understanding the mechanisms of plasticity in structural steels is essential for the operation of next-generation fusion reactors. Elemental composition, particularly the amount of Cr present, and irradiation can have separate and synergistic effects on the mechanical properties of ferritic/martensitic steels. The study of ion-irradiated FeCr alloys is useful for gaining a mechanistic understanding of irradiation damage in steels. Previous studies of ion-irradiated FeCr did not clearly distinguish between the nucleation of dislocations to initiate plasticity, and their propagation through the material as plasticity progresses. In this study, Fe3Cr, Fe5Cr, and Fe10Cr were irradiated with 20 MeV Fe$^{3+}$ ions at room temperature to nominal doses of 0.01 dpa and 0.1 dpa. Nanoindentation was carried out with Berkovich and spherical indenter tips to study the nucleation of dislocations and their subsequent propagation. The presence of irradiation-induced defects reduced the theoretical shear stress and barrier for dislocation nucleation. The presence of Cr further enhanced this effect due to increased retention of irradiation defects. However, this combined effect is still small compared to dislocation nucleation from pre-existing sources such as Frank-Read sources and grain boundaries. The yield strength, an indicator of dislocation mobility, of FeCr increased with irradiation damage and Cr. The increased retention of irradiation defects due to the presence of Cr also further increased the yield strength. Reduced work hardening capacity was also observed following irradiation. The synergistic effects of Cr and irradiation damage in FeCr appear to be more important for the propagation of dislocations, rather than their nucleation.
Coupling of nano-indentation and crystal plasticity finite element (CPFE) simulations is widely used to quantitatively probe the small-scale mechanical behaviour of materials. Earlier studies showed that CPFE can successfully reproduce the load-displacement curves and surface morphology for different crystal orientations. Here, we report the orientation dependence of residual lattice strain patterns and dislocation structures in tungsten. For orientations with one or more Burgers vectors close to parallel to the sample surface, dislocation movement and residual lattice strains are confined to long, narrow channels. CPFE is unable to reproduce this behaviour, and our analysis reveals the responsible underlying mechanisms.
Tungsten carbide cobalt hardmetals are commonly used as cutting tools subject to high operation temperature and pressures, where the mechanical performance of the tungsten carbide phase affects the wear and lifetime of the material. In this study, the mechanical behaviour of the isolated tungsten carbide (WC) phase was investigated using single crystal micropillar compression. Micropillars 1-5 ${mu}$m in diameter, in two crystal orientations, were fabricated using focused ion beam (FIB) machining and subsequently compressed between room temperature and 600 {deg}C. The activated plastic deformation mechanisms were strongly anisotropic and weakly temperature dependent. The flow stresses of basal-oriented pillars were about three times higher than the prismatic pillars, and pillars of both orientations soften slightly with increasing temperature. The basal pillars tended to deform by either unstable cracking or unstable yield, whereas the prismatic pillars deformed by slip-mediated cracking. However, the active deformation mechanisms were also sensitive to pillar size and shape. Slip trace analysis of the deformed pillars showed that {10-10} prismatic planes were the dominant slip plane in WC. Basal slip was also identified as a secondary slip system, activated at high temperatures.
The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a two-dimensional Grand Canonical Monte-Carlo (GCMC) approach developed to perform atomistic simulations of thousands of large organic molecules self-assembling on metal surfaces. Computing adsorption isotherms at room temperature and spanning over the characteristic sub-micrometric scales, we confront the robustness of the approach with three different well-known systems: ZnPcCl8 on Ag(111), CuPcF16 on Au(111) and PTBC on Ag(111). We retrieve respectively their square, oblique and hexagonal supramolecular tilling. The code incorporates generalized force fields to describe the molecular interactions, which provides transferability and versatility to many organic building blocks and metal surfaces.