No Arabic abstract
We present the complete formula for the cusp anomalous dimension at four loops in QCD and in maximally supersymmetric Yang-Mills. In the latter theory it is given by begin{equation} {Gamma}^{rm}_{rm cusp}Big|_{alpha_s^4} = -left( frac{alpha_s N}{pi}right)^4 left[ frac{73 pi^6}{20160} + frac{ zeta_{3}^2}{8} + frac{1}{N^2} left( frac{31pi^6}{5040} + frac{9 zeta_3^2}{4} right) right] ,. onumber end{equation} Our approach is based on computing the correlation function of a rectangular light-like Wilson loop with a Lagrangian insertion, normalized by the expectation value of the Wilson loop. In maximally supersymmetric Yang-Mills theory, this ratio is a finite function of a cross-ratio and the coupling constant. We compute it to three loops, including the full colour dependence. Integrating over the position of the Lagrangian insertion gives the four-loop Wilson loop. We extract its leading divergence, which determines the four-loop cusp anomalous dimension. Finally, we employ a supersymmetric decomposition to derive the last missing ingredient in the corresponding QCD result.
BPS Wilson loops in supersymmetric gauge theories have been the subjects of active research since they are often amenable to exact computation. So far most of the studies have focused on loops that do not intersect. In this paper, we derive exact results for intersecting 1/8 BPS Wilson loops in N=4 supersymmetric Yang-Mills theory, using a combination of supersymmetric localization and the loop equation in 2d gauge theory. The result is given by a novel matrix-model-like representation which couples multiple contour integrals and a Gaussian matrix model. We evaluate the integral at large N, and make contact with the string worldsheet description at strong coupling. As an application of our results, we compute exactly a small-angle limit (and more generally near-BPS limits) of the cross anomalous dimension which governs the UV divergence of intersecting Wilson lines. The same quantity describes the soft anomalous dimension of scattering amplitudes of W-bosons in the Coulomb branch.
We compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-singlet twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin 18. From this, we numerically evaluate the nonplanar contribution to the four-loop lightlike cusp anomalous dimension and derive the transcendental $zeta_3$ and $zeta_5$ parts of the universal anomalous dimension for arbitrary Lorentz spin in analytic form. As for the lightlike cusp anomalous dimension and the $zeta_5$ part of the universal anomalous dimension, we confirm previous results.
We present numerical results for the nonplanar lightlike cusp and collinear anomalous dimension at four loops in ${mathcal N} = 4$ SYM theory, which we infer from a calculation of the Sudakov form factor. The latter is expressed as a rational linear combination of uniformly transcendental integrals for arbitrary colour factor. Numerical integration in the nonplanar sector reveals explicitly the breakdown of quadratic Casimir scaling at the four-loop order. A thorough analysis of the reported numerical uncertainties is carried out.
We present the fully integrated form of the two-loop four-gluon amplitude in $mathcal{N} = 2$ supersymmetric quantum chromodynamics with gauge group SU$(N_c)$ and with $N_f$ massless supersymmetric quarks (hypermultiplets) in the fundamental representation. Our result maintains full dependence on $N_c$ and $N_f$, and relies on the existence of a compact integrand representation that exhibits the duality between color and kinematics. Specializing to the $mathcal{N} = 2$ superconformal theory, where $N_f = 2N_c$ , we obtain remarkably simple amplitudes that have an analytic structure close to that of $mathcal{N} = 4$ super-Yang-Mills theory, except that now certain lower-weight terms appear. We comment on the corresponding results for other gauge groups.
The angle-dependent cusp anomalous dimension governs divergences coming from soft gluon exchanges between heavy particles, such as top quarks. We focus on the matter-dependent contributions and compute the first truly non-planar terms. They appear at four loops and are proportional to a quartic Casimir operator in color space. Specializing our general gauge theory result to U(1), we obtain the full QED four-loop angle-dependent cusp anomalous dimension. While more complicated functions appear at intermediate steps, the analytic answer depends only on multiple polylogarithms with singularities at fourth roots of unity. It can be written in terms of four rational structures, and contains functions of up to maximal transcendental weight seven. Despite this complexity, we find that numerically the answer is tantalizingly close to the appropriately rescaled one-loop formula, over most of the kinematic range. We take several limits of our analytic result, which serves as a check and allows us to obtain new, power-suppressed terms. In the anti-parallel lines limit, which corresponds to production of two massive particles at threshold, we find that the subleading power correction vanishes. Finally, we compute the quartic Casimir contribution for scalars in the loop. Taking into account a supersymmetric decomposition, we derive the first non-planar corrections to the quark anti-quark potential in maximally supersymmetric gauge theory.