Do you want to publish a course? Click here

The nonplanar cusp and collinear anomalous dimension at four loops in ${mathcal N} = 4$ SYM theory

97   0   0.0 ( 0 )
 Added by Tobias Huber
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present numerical results for the nonplanar lightlike cusp and collinear anomalous dimension at four loops in ${mathcal N} = 4$ SYM theory, which we infer from a calculation of the Sudakov form factor. The latter is expressed as a rational linear combination of uniformly transcendental integrals for arbitrary colour factor. Numerical integration in the nonplanar sector reveals explicitly the breakdown of quadratic Casimir scaling at the four-loop order. A thorough analysis of the reported numerical uncertainties is carried out.



rate research

Read More

We compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-singlet twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin 18. From this, we numerically evaluate the nonplanar contribution to the four-loop lightlike cusp anomalous dimension and derive the transcendental $zeta_3$ and $zeta_5$ parts of the universal anomalous dimension for arbitrary Lorentz spin in analytic form. As for the lightlike cusp anomalous dimension and the $zeta_5$ part of the universal anomalous dimension, we confirm previous results.
We present the complete formula for the cusp anomalous dimension at four loops in QCD and in maximally supersymmetric Yang-Mills. In the latter theory it is given by begin{equation} {Gamma}^{rm}_{rm cusp}Big|_{alpha_s^4} = -left( frac{alpha_s N}{pi}right)^4 left[ frac{73 pi^6}{20160} + frac{ zeta_{3}^2}{8} + frac{1}{N^2} left( frac{31pi^6}{5040} + frac{9 zeta_3^2}{4} right) right] ,. onumber end{equation} Our approach is based on computing the correlation function of a rectangular light-like Wilson loop with a Lagrangian insertion, normalized by the expectation value of the Wilson loop. In maximally supersymmetric Yang-Mills theory, this ratio is a finite function of a cross-ratio and the coupling constant. We compute it to three loops, including the full colour dependence. Integrating over the position of the Lagrangian insertion gives the four-loop Wilson loop. We extract its leading divergence, which determines the four-loop cusp anomalous dimension. Finally, we employ a supersymmetric decomposition to derive the last missing ingredient in the corresponding QCD result.
We compute the non-planar contribution to the universal anomalous dimension of twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin eighteen. Exploiting the results of this and our previous calculations along with recent analytic results for the cusp anomalous dimension and some expected analytic properties, we reconstruct a general expression valid for arbitrary Lorentz spin. We study various properties of this general result, such as its large-spin limit, its small-x limit, and others. In particular, we present a prediction for the non-planar contribution to the anomalous dimension of the single-magnon operator in the beta-deformed version of the theory.
We consider supergravity theories with 16 supercharges in Minkowski space with dimensions $d>3$. We argue that there is an upper bound on the number of massless modes in such theories depending on $d$. In particular we show that the rank of the gauge symmetry group $G$ in $d$ dimensions is bounded by $r_Gleq 26-d$. This in particular demonstrates that 4 dimensional ${cal N}=4$ SYM theories with rank bigger than 22, despite being consistent and indeed finite before coupling to gravity, cannot be consistently coupled to ${cal N}=4$ supergravity in Minkowski space and belong to the swampland. Our argument is based on the swampland conditions of completeness of spectrum of defects as well as a strong form of the distance conjecture and relies on unitarity as well as supersymmetry of the worldsheet theory of BPS strings. The results are compatible with known string constructions and provide further evidence for the string lamppost principle (SLP): that string theory lamppost seems to capture ${it all}$ consistent quantum gravitational theories.
71 - M. Bianchi 2000
We compute four-point correlation functions of scalar composite operators in the N=4 supercurrent multiplet at order g^4 using the N=1 superfield formalism. We confirm the interpretation of short-distance logarithmic behaviours in terms of anomalous dimensions of unprotected operators exchanged in the intermediate channels and we determine the two-loop contribution to the anomalous dimension of the N=4 Konishi supermultiplet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا