Do you want to publish a course? Click here

Levy flights for light in ordered lasers

120   0   0.0 ( 0 )
 Added by Andr\\'e L. Moura
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Levy flights for light have been demonstrated in disordered systems with and without optical gain, and remained unobserved in ordered ones. In the present letter, we investigate, numerically and experimentally, Levy flights for light in ordered systems due to an ordered (conventional) laser. The statistical analysis was performed on the intensity fluctuations of the output spectra upon repeated identical experimental realizations. We found out that the optical gain and the mirrors reflectivity are critical parameters governing the fluctuation statistics. We identified Levy regimes for gain around the laser threshold, and Gaussian-Levy-Gaussian crossovers were unveiling when increasing the gain from below to above the threshold. The experimental results were corroborated by Monte Carlo simulations, and the fluctuations were associated to a Langevin noise source that takes into account the randomness of the spontaneous emission, which seeds the laser emission and can cause large fluctuations of the output spectra from shot-to-shot under identical experimental realizations.



rate research

Read More

129 - Q. Baudouin , R. Pierrat , A. Eloy 2014
We present theoretical and experimental results of Levy flights of light originating from a random walk of photons in a hot atomic vapor. In contrast to systems with quenched disorder, this system does not present any correlations between the position and the step length of the random walk. In an analytical model based on microscopic first principles including Doppler broadening we find anomalous Levy-type superdiffusion corresponding to a single-step size distribution P(x) proportional to x^(-1-alpha), with alpha=1. We show that this step size distribution leads to a violation of Ohms law [T_(diff) proportional to L^(-alpha/2) different from 1/L], as expected for a Levy walk of independent steps. Furthermore the spatial profile of the transmitted light develops power law tails [I(r) proportional to r^(-3-alpha)]. In an experiment using a slab geometry with hot rubidium vapor, we measured the total diffuse transmission T_(diff) and the spatial profile of the transmitted light T_{diff}(r). We obtained the microscopic Levy parameter alpha under macroscopic multiple scattering conditions paving the way to investigation of Levy flights in different atomic physics and astrophysics systems.
337 - Denis Boyer , Inti Pineda 2015
Among Markovian processes, the hallmark of Levy flights is superdiffusion, or faster-than-Brownian dynamics. Here we show that Levy laws, as well as Gaussians, can also be the limit distributions of processes with long range memory that exhibit very slow diffusion, logarithmic in time. These processes are path-dependent and anomalous motion emerges from frequent relocations to already visited sites. We show how the Central Limit Theorem is modified in this context, keeping the usual distinction between analytic and non-analytic characteristic functions. A fluctuation-dissipation relation is also derived. Our results may have important applications in the study of animal and human displacements.
168 - Nicolas Mercadier 2013
We investigate multiple scattering of near-resonant light in a Doppler-broadened atomic vapor. We experimentally characterize the length distribution of the steps between successive scattering events. The obtained power law is characteristic of a superdiffusive behavior, where rare but very long steps (Levy flights) dominate the transport properties.
126 - A. Iomin 2015
It is shown that a quantum Levy process in a box leads to a problem involving topological constraints in space, and its treatment in the framework of the path integral formalism with the Levy measure is suggested. The eigenvalue problem for the infinite potential well is properly defined and solved. An analytical expression for the evolution operator is obtained in the path integral presentation, and the path integral takes the correct limit of the local quantum mechanics with topological constraints. An example of the Levy process in oscillating walls is also considered in the adiabatic approximation.
Data from a long time evolution experiment with Escherichia Coli and from a large study on copy number variations in subjects with european ancestry are analyzed in order to argue that mutations can be described as Levy flights in the mutation space. These Levy flights have at least two components: random single-base substitutions and large DNA rearrangements. From the data, we get estimations for the time rates of both events and the size distribution function of large rearrangements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا