No Arabic abstract
We present an empirical relation between the cold gas surface density ($Sigma_{rm gas}$) and the optical extinction (${rm A_V}$) in a sample of 103 galaxies from the Extragalactic Database for Galaxy Evolution (EDGE) survey. This survey provides CARMA interferometric CO observations for 126 galaxies included in the Calar Alto Legacy Integral Field Area (CALIFA) survey. The matched, spatially resolved nature of these data sets allows us to derive the $Sigma_{rm gas}$-${rm A_V}$ relation on global, radial, and kpc (spaxel) scales. We determine ${rm A_V}$ from the Balmer decrement (H$alpha$/H$beta$). We find that the best fit for this relation is $Sigma_{rm gas} ({rm M_odot pc^{-2}})sim~26~times~ {rm A_V}({rm mag})$, and that it does not depend on the spatial scale used for the fit. However, the scatter in the fits increases as we probe smaller spatial scales, reflecting the complex relative spatial distributions of stars, gas, and dust. We investigate the $Sigma_{rm gas}$/ ${rm A_V}$ ratio on radial and spaxel scales as a function of ${rm EW(Halpha)}$. We find that at larger values of ${rm EW(Halpha)}$ (i.e., actively star-forming regions) this ratio tend to converge to the value expected for dust-star mixed geometries ($sim$ 30 $mathrm{M_{odot} ,pc^{-2},mag^{-1}}$). On radial scales, we do not find a significant relation between the $Sigma_{rm gas}$/${rm A_V}$ ratio and the ionized gas metallicity. We contrast our estimates of $Sigma_{rm gas}$ using ${rm A_V}$ with compilations in the literature of the gas fraction on global and radial scales as well as with well known scaling relations such as the radial star-formation law and the $Sigma_{rm gas}$-$Sigma_*$ relation. These tests show that optical extinction is a reliable proxy for estimating $Sigma_{rm gas}$ in the absence of direct sub/millimeter observations of the cold gas.
We present a comparative study of molecular and ionized gas kinematics in nearby galaxies. These results are based on observations from the EDGE survey, which measured spatially resolved $^{12}$CO(J=1-0) in 126 nearby galaxies. Every galaxy in EDGE has corresponding resolved ionized gas measurements from CALIFA. Using a sub-sample of 17 rotation dominated, star-forming galaxies where precise molecular gas rotation curves could be extracted, we derive CO and H$alpha$ rotation curves using the same geometric parameters out to $gtrsim$1 $R_e$. We find that $sim$75% of our sample galaxies have smaller ionized gas rotation velocities than the molecular gas in the outer part of the rotation curve. In no case is the molecular gas rotation velocity measurably lower than that of the ionized gas. We suggest that the lower ionized gas rotation velocity can be attributed to a significant contribution from extraplanar diffuse ionized gas in a thick, turbulence supported disk. Using observations of the H$gamma$ transition also available from CALIFA, we measure ionized gas velocity dispersions and find that these galaxies have sufficiently large velocity dispersions to support a thick ionized gas disk. Kinematic simulations show that a thick disk with a vertical rotation velocity gradient can reproduce the observed differences between the CO and H$alpha$ rotation velocities. Observed line ratios tracing diffuse ionized gas are elevated compared to typical values in the midplane of the Milky Way. In galaxies affected by this phenomenon, dynamical masses measured using ionized gas rotation curves will be systematically underestimated.
We investigate the prevalence, properties, and kinematics of extraplanar diffuse ionized gas (eDIG) in a sample of 25 edge-on galaxies selected from the CALIFA survey. We measure ionized gas scale heights from ${rm Halpha}$ and find that 90% have measurable scale heights with a median of $0.8^{+0.7}_{-0.4}$ kpc. From the ${rm Halpha}$ kinematics, we find that 60% of galaxies show a decrease in the rotation velocity as a function of height above the midplane. This lag is characteristic of eDIG, and we measure a median lag of 21 km s$^{-1}$ kpc$^{-1}$ which is comparable to lags measured in the literature. We also investigate variations in the lag with radius. $rm H{small I}$ lags have been reported to systematically decrease with galactocentric radius. We find both increasing and decreasing ionized gas lags with radius, as well as a large number of galaxies consistent with no radial lag variation, and investigate these results in the context of internal and external origins for the lagging ionized gas. We confirm that the ${rm [S{small II}]}$/${rm Halpha}$ and ${rm [N{small II}]}$/${rm Halpha}$ line ratios increase with height above the midplane as is characteristic of eDIG. The ionization of the eDIG is dominated by star-forming complexes (leaky ${rm H{small II}}$ regions). We conclude that the lagging ionized gas is turbulent ejected gas likely resulting from star formation activity in the disk as opposed to gas in the stellar thick disk or bulge. This is further evidence for the eDIG being a product of stellar feedback and for the pervasiveness of this WIM-like phase in many local star-forming galaxies.
We present the results of our ALMA HCN J=3-2 and HCO+ J=3-2 line observations of a uniformly selected sample (>25) of nearby ultraluminous infrared galaxies (ULIRGs) at z < 0.15. The emission of these dense molecular gas tracers and continuum are spatially resolved in the majority of observed ULIRGs for the first time with achieved synthesized beam sizes of ~0.2 arcsec or ~500 pc. In most ULIRGs, the HCN-to-HCO+ J=3-2 flux ratios in the nuclear regions within the beam size are systematically higher than those in the spatially extended regions. The elevated nuclear HCN J=3-2 emission could be related to (a) luminous buried active galactic nuclei, (b) the high molecular gas density and temperature in ULIRGs nuclei, and/or (c) mechanical heating by spatially compact nuclear outflows. A small fraction of the observed ULIRGs display higher HCN-to-HCO+ J=3-2 flux ratios in localized off-nuclear regions than those of the nuclei, which may be due to mechanical heating by spatially extended outflows. The observed nearby ULIRGs are generally rich in dense (>10^5 cm^-3) molecular gas, with an estimated mass of >10^9 Msun within the nuclear (a few kpc) regions, and dense gas can dominate the total molecular mass there. We find a low detection rate (<20%) regarding the possible signature of a vibrationally excited (v2=1f) HCN J=3-2 emission line in the vicinity of the bright HCO+ J=3-2 line that may be due, in part, to the large molecular line widths of ULIRGs.
The Calar Alto Legacy Integral Field Area (CALIFA) is an ongoing 3D spectroscopic survey of 600 nearby galaxies of all kinds. This pioneer survey is providing valuable clues on how galaxies form and evolve. Processed through spectral synthesis techniques, CALIFA datacubes allow us to, for the first time, spatially resolve the star formation history of galaxies spread across the color-magnitude diagram. The richness of this approach is already evident from the results obtained for the first 107 galaxies. Here we show how the different galactic spatial sub-components (bulge and disk) grow their stellar mass over time. We explore the results stacking galaxies in mass bins, finding that, except at the lowest masses, galaxies grow inside-out, and that the growth rate depends on a galaxys mass. The growth rate of inner and outer regions differ maximally at intermediate masses. We also find a good correlation between the age radial gradient and the stellar mass density, suggesting that the local density is a main driver of galaxy evolution.
We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit (IFU) survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas depletion time ($tau_{rm dep}$) on kiloparsec scales in 52 galaxies. We divide each galaxy into two parts: the center, defined as the region within $0.1 R_{25}$, and the disk, defined as the region between $0.1$ and $0.7 R_{25}$. We find that 14 galaxies show a shorter $tau_{rm dep}$ ($sim 1$ Gyr) in the center relative to that in the disk ($tau_{rm dep} sim 2.4$ Gyrs), which means the central region in those galaxies is more efficient at forming stars per unit molecular gas mass. This finding implies that the centers with shorter $tau_{rm dep}$ resemble the intermediate regime between galactic disks and starburst galaxies. Furthermore, the central drop in $tau_{rm dep}$ is correlated with a central increase in the stellar surface density, suggesting that a shorter $tau_{rm dep}$ is associated with molecular gas compression by the stellar gravitational potential. We argue that varying the CO-to-H$_2$ conversion factor only exaggerates the central drop of $tau_{rm dep}$.