Do you want to publish a course? Click here

Geometric Planar Networks on Bichromatic Points

89   0   0.0 ( 0 )
 Added by Sayan Bandyapadhyay
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study four classical graph problems -- Hamiltonian path, Traveling salesman, Minimum spanning tree, and Minimum perfect matching on geometric graphs induced by bichromatic (red and blue) points. These problems have been widely studied for points in the Euclidean plane, and many of them are NP-hard. In this work, we consider these problems in two restricted settings: (i) collinear points and (ii) equidistant points on a circle. We show that almost all of these problems can be solved in linear time in these constrained, yet non-trivial settings.



rate research

Read More

Given a set $P$ of $n$ red and blue points in the plane, a emph{planar bichromatic spanning tree} of $P$ is a spanning tree of $P$, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree $T$, such that the length of the longest edge in $T$ is minimized. In this paper, we show that this problem is NP-hard for points in general position. Moreover, we present a polynomial-time $(8sqrt{2})$-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck $lambda$ can be converted to a planar bichromatic spanning tree of bottleneck at most $8sqrt{2}lambda$.
In this article, we consider a collection of geometric problems involving points colored by two colors (red and blue), referred to as bichromatic problems. The motivation behind studying these problems is two fold; (i) these problems appear naturally and frequently in the fields like Machine learning, Data mining, and so on, and (ii) we are interested in extending the algorithms and techniques for single point set (monochromatic) problems to bichromatic case. For all the problems considered in this paper, we design low polynomial time exact algorithms. These algorithms are based on novel techniques which might be of independent interest.
123 - Haitao Wang 2020
Given a set $S$ of $n$ points in the Euclidean plane, the two-center problem is to find two congruent disks of smallest radius whose union covers all points of $S$. Previously, Eppstein [SODA97] gave a randomized algorithm of $O(nlog^2n)$ expected time and Chan [CGTA99] presented a deterministic algorithm of $O(nlog^2 nlog^2log n)$ time. In this paper, we propose an $O(nlog^2 n)$ time deterministic algorithm, which improves Chans deterministic algorithm and matches the randomized bound of Eppstein. If $S$ is in convex position, then we solve the problem in $O(nlog nloglog n)$ deterministic time. Our results rely on new techniques for dynamically maintaining circular hulls under point insertions and deletions, which are of independent interest.
For a fixed virtual scene (=collection of simplices) S and given observer position p, how many elements of S are weakly visible (i.e. not fully occluded by others) from p? The present work explores the trade-off between query time and preprocessing space for these quantities in 2D: exactly, in the approximate deterministic, and in the probabilistic sense. We deduce the EXISTENCE of an O(m^2/n^2) space data structure for S that, given p and time O(log n), allows to approximate the ratio of occluded segments up to arbitrary constant absolute error; here m denotes the size of the Visibility Graph--which may be quadratic, but typically is just linear in the size n of the scene S. On the other hand, we present a data structure CONSTRUCTIBLE in O(n*log(n)+m^2*polylog(n)/k) preprocessing time and space with similar approximation properties and query time O(k*polylog n), where k<n is an arbitrary parameter. We describe an implementation of this approach and demonstrate the practical benefit of the parameter k to trade memory for query time in an empirical evaluation on three classes of benchmark scenes.
We consider paths with low emph{exposure} to a 2D polygonal domain, i.e., paths which are seen as little as possible; we differentiate between emph{integral} exposure (when we care about how long the path sees every point of the domain) and emph{0/1} exposure (just counting whether a point is seen by the path or not). For the integral exposure, we give a PTAS for finding the minimum-exposure path between two given points in the domain; for the 0/1 version, we prove that in a simple polygon the shortest path has the minimum exposure, while in domains with holes the problem becomes NP-hard. We also highlight connections of the problem to minimum satisfiability and settle hardness of variants of planar min- and max-SAT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا