No Arabic abstract
The discovery of topological insulator phase has ignited massive research interests in novel quantum materials. Topological insulators with superconductivity further invigorate the importance of materials providing the platform to study the interplay between these two unique states. However, the candidates of such materials are rare. Here, we report a systematic angle-resolved photoemission spectroscopy (ARPES) study of a superconducting material CaBi2 [Tc = 2 K], corroborated by the first principles calculations. Our study reveals the presence of Dirac cones with a topological protection in this system. Systematic topological analysis based on symmetry indicator shows the presence of weak topological indices in this material. Furthermore, our transport measurements show the presence of large magnetoresistance in this compound. Our results indicate that CaBi2 could potentially provide a material platform to study the interplay between superconductivity and topology.
The helical Dirac fermions on the surface of topological insulators host novel relativistic quantum phenomena in solids. Manipulating spins of topological surface state (TSS) represents an essential step towards exploring the theoretically predicted exotic states related to time reversal symmetry (TRS) breaking via magnetism or magnetic field. Understanding Zeeman effect of TSS and determining its g-factor are pivotal for such manipulations in the latter form of TRS breaking. Here, we report those direct experimental observations in Bi2Se3 and Sb2Te2Se by spectroscopic imaging scanning tunneling microscopy. The Zeeman shifting of zero mode Landau level is identified unambiguously by judiciously excluding the extrinsic influences associated with the non-linearity in the TSS band dispersion and the spatially varying potential. The g-factors of TSS in Bi2Se3 and Sb2Te2Se are determined to be 18 and -6, respectively. This remarkable material dependence opens a new route to control the spins in the TSS.
In 1928, P. Dirac proposed a new wave equation to describe relativistic electrons. Shortly afterwards, O. Klein solved a simple potential step problem for the Dirac equation and stumbled upon an apparent paradox - the potential becomes transparent when the height is larger than the electron energy. For massless particles, backscattering is completely forbidden in Klein tunneling, leading to perfect transmission through any potential barrier. Recent advent of condensed matter systems with Dirac-like excitations, such as graphene and topological insulators (TIs), has opened the possibility of observing the Klein tunneling experimentally. In the surface states of TIs, fermions are bound by spin-momentum locking, and are thus immune to backscattering due to time-reversal symmetry. Here we report the observation of perfect Andreev reflection in point contact spectroscopy - a clear signature of Klein tunneling and a manifestation of the underlying relativistic physics of a proximity-induced superconducting state in a topological Kondo insulator.
When magnetic atoms are inserted inside a superconductor, the superconducting order is locally depleted as a result of the antagonistic nature of magnetism and superconductivity1. Thereby, distinctive spectral features, known as Yu-Shiba-Rusinov states, appear inside the superconducting gap2-4. The search for Yu-Shiba-Rusinov states in different materials is intense, as they can be used as building blocks to promote Majorana modes5 suitable for topological quantum computing6. Here we report the first realization of Yu-Shiba-Rusinov states in graphene, a non-superconducting 2D material, and without the participation of magnetic atoms. We induce superconductivity in graphene by proximity effect7-9 brought by adsorbing nanometer scale superconducting Pb islands. Using scanning tunneling microscopy and spectroscopy we measure the superconducting proximity gap in graphene and we visualize Yu-Shiba-Rusinov states in graphene grain boundaries. Our results reveal the very special nature of those Yu-Shiba-Rusinov states, which extends more than 20 nm away from the grain boundaries. These observations provide the long sought experimental confirmation that graphene grain boundaries host local magnetic moments10-14 and constitute the first observation of Yu-Shiba-Rusinov states in a chemically pure system.
Initiated by the discovery of topological insulators, topologically non-trivial materials, more specifically topological semimetals and metals have emerged as new frontiers in the field of quantum materials. In this work, we perform a systematic measurement of EuMg2Bi2, a compound with antiferromagnetic transition temperature at 6.7 K, observed via electrical resistivity, magnetization and specific heat capacity measurements. By utilizing angle-resolved photoemission spectroscopy in concurrence with first-principles calculations, we observe Dirac cones at the corner and the zone center of the Brillouin zone. From our experimental data, multiple Dirac states at G and K points are observed, where the Dirac nodes are located at different energy positions from the Fermi level. Our experimental investigations of detailed electronic structure as well as transport measurements of EuMg2Bi2 suggest that it could potentially provide a platform to study the interplay between topology and magnetism.
We develop a protocol to determine the presence and extent of a topological phase with Majorana zero modes in a hybrid superconductor-semiconductor device. The protocol is based on conductance measurements in a three-terminal device with two normal leads and one superconducting lead. A radio-frequency technique acts as a proxy for the measurement of local conductance, allowing a rapid, systematic scan of the large experimental phase space of the device. Majorana zero modes cause zero bias conductance peaks at each end of the wire, so we identify promising regions of the phase space by filtering for this condition. To validate the presence of a topological phase, a subsequent measurement of the non-local conductance in these regions is used to detect a topological transition via the closing and reopening of the bulk energy gap. We define data analysis routines that allow for an automated and unbiased execution of the protocol. Our protocol is designed to screen out false positives, especially trivial Andreev bound states that mimic Majorana zero modes in local conductance. We apply the protocol to several examples of simulated data illustrating the detection of topological phases and the screening of false positives.