Do you want to publish a course? Click here

Inflation models in the light of self-interacting sterile neutrinos

81   0   0.0 ( 0 )
 Added by Arindam Mazumdar
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Short baseline neutrino experiments, like LSND and MiniBooNE experiments, pointed towards the existence of eV mass scale sterile neutrinos. To reconcile sterile neutrinos with cosmology self interaction between sterile neutrinos has been studied. We analysed Planck cosmic microwave background (CMB) data with self-interacting sterile neutrino (SI$ u$) and study their impact on inflation models. The fit to the CMB data in SI$ u$ model is as good as the fit to $Lambda$CDM model. We find that the spectral index ($n_s$) values shift to $0.9361pm 0.0055$ in SI$ u$ model. This has significant impact on the validity of different inflation models. For example the Starobinsky and quartic hilltop model, which were allowed within $Lambda$CDM cosmology, are ruled out. On the other hand some models like natural and Coleman-Weinberg inflation are now favoured. Therefore, the existence of self interacting sterile neutrinos with eV order of mass will play an important role in the selection of correct inflation model.



rate research

Read More

Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. Such sterile neutrinos are incompatible with cosmology because they suppress structure formation unless they can be prevented from thermalising in the early Universe or removed by subsequent decay or annihilation. Here we present a novel scenario in which both sterile neutrinos and dark matter are coupled to a new, light pseudoscalar. This can prevent thermalisation of sterile neutrinos and make dark matter sufficiently self-interacting to have an impact on galactic dynamics and possibly resolve some of the known problems with the standard cold dark matter scenario. Even more importantly it leads to a strongly self-interacting plasma of sterile neutrinos and pseudoscalars at late times and provides an excellent fit to CMB data. The usual cosmological neutrino mass problem is avoided by sterile neutrino annihilation to pseudoscalars. The preferred value of $H_0$ is substantially higher than in standard $Lambda$CDM and in much better agreement with local measurements.
The neutrino minimal standard model ($ u$MSM) has been tightly constrained in the recent years, either from dark matter (DM) production or from X-ray and small-scale observations. However, current bounds on sterile neutrino DM can be significantly modified when considering a $ u$MSM extension, in which the DM candidates interact via a massive (axial) vector field. In particular, standard production mechanisms in the early Universe can be affected through the decay of such a massive mediator. We perform an indirect detection analysis to study how the $ u$MSM parameter-space constraints are affected by said interactions. We compute the X-ray fluxes considering a DM profile that self-consistently accounts for the particle physics model by using an updated version of the Ruffini-Arguelles-Rueda (RAR) fermionic (ino) model, instead of phenomenological profiles such as the Navarro-Frenk-White (NFW) distribution. We show that the RAR profile accounting for interacting DM, is compatible with measurements of the Galaxy rotation curve and constraints on the DM self-interacting cross section from the Bullet cluster. A new analysis of the X-ray NuSTAR data in the central parsec of the Milky Way, is here performed to derive constraints on the self-interacting sterile neutrino parameter-space. Such constraints are stronger than those obtained with commonly used DM profiles, due to the dense DM core characteristic of the RAR profiles.
Sterile neutrinos in the electronvolt mass range are hinted at by a number of terrestrial neutrino experiments. However, such neutrinos are highly incompatible with data from the Cosmic Microwave Background and large scale structure. This paper discusses how charging sterile neutrinos under a new pseudoscalar interaction can reconcile eV sterile neutrinos with terrestrial neutrino data. We show that this model can reconcile eV sterile neutrinos in cosmology, providing a fit to all available data which is way better than the standard $Lambda$CDM model with one additional fully thermalized sterile neutrino. In particular it also prefers a value of the Hubble parameter much closer to the locally measured value.
We perform a comprehensive study of cosmological constraints on non-standard neutrino self-interactions using cosmic microwave background (CMB) and baryon acoustic oscillation data. We consider different scenarios for neutrino self-interactions distinguished by the fraction of neutrino states allowed to participate in self-interactions and how the relativistic energy density, N$_{textrm{eff}}$, is allowed to vary. Specifically, we study cases in which: all neutrino states self-interact and N$_{textrm{eff}}$ varies; two species free-stream, which we show alleviates tension with laboratory constraints, while the energy in the additional interacting states varies; and a variable fraction of neutrinos self-interact with either the total N$_{textrm{eff}}$ fixed to the Standard Model value or allowed to vary. In no case do we find compelling evidence for new neutrino interactions or non-standard values of N$_{textrm{eff}}$. In several cases we find additional modes with neutrino decoupling occurring at lower redshifts $z_{textrm{dec}} sim 10^{3-4}$. We do a careful analysis to examine whether new neutrino self-interactions solve or alleviate the so-called $H_0$ tension and find that, when all Planck 2018 CMB temperature and polarization data is included, none of these examples ease the tension more than allowing a variable N$_{textrm{eff}}$ comprised of free-streaming particles. Although we focus on neutrino interactions, these constraints are applicable to any light relic particle.
We review the status of searches for sterile neutrinos in the $sim 1$ eV range, with an emphasis on the latest results from short baseline oscillation experiments and how they fit within sterile neutrino oscillation models. We present global fit results to a three-active-flavor plus one-sterile-flavor model (3+1), where we find an improvement of $Delta chi^2=35$ for 3 additional parameters compared to a model with no sterile neutrino. This is a 5$sigma$ improvement, indicating that an effect that is like that of a sterile neutrino is highly preferred by the data. However we note that separate fits to the appearance and disappearance oscillation data sets within a 3+1 model do not show the expected overlapping allowed regions in parameter space. This tension leads us to explore two options: 3+2, where a second additional mass state is introduced, and a 3+1+decay model, where the $ u_4$ state can decay to invisible particles. The 3+1+decay model, which is also motivated by improving compatibility with cosmological observations, yields the larger improvement, with a $Delta chi^2=8$ for 1 additional parameter beyond the 3+1 model, which is a $2.6sigma$ improvement. Moreover the tension between appearance and disappearance experiments is reduced compared to 3+1, although disagreement remains. In these studies, we use a frequentist approach and also a Bayesean method of finding credible regions. With respect to this tension, we review possible problems with the global fitting method. We note multiple issues, including problems with reproducing the experimental results, especially in the case of experiments that do not provide adequate data releases. We discuss an unexpected 5 MeV excess, observed in the reactor flux energy spectrum, that may be affecting the oscillation interpretation of the short baseline reactor data. We emphasize the care that must be taken in mapping to the true neutrino energy in the case of oscillation experiments that are subject to multiple interaction modes and nuclear effects. We point to problems with the Parameter-Goodness-of-Fit test that is used to quantify the tension. Lastly, we point out that analyses presenting limits often receive less scrutiny that signals. While we provide a snapshot of the status of sterile neutrino searches today and global fits to their interpretation, we emphasize that this is a fast-moving field. We briefly review experiments that are expected to report new data in the immediate future. Lastly, we consider the 5-year horizon, where we propose that decay-at-rest neutrino sources are the best method of finally resolving the confusing situation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا