Do you want to publish a course? Click here

From Little String Free Energies Towards Modular Graph Functions

110   0   0.0 ( 0 )
 Added by Stefan Hohenegger
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We study the structure of the non-perturbative free energy of a one-parameter class of little string theories (LSTs) of A-type in the so-called unrefined limit. These theories are engineered by $N$ M5-branes probing a transverse flat space. By analysing a number of examples, we observe a pattern which suggests to write the free energy in a fashion that resembles a decomposition into higher-point functions which can be presented in a graphical way reminiscent of sums of (effective) Feynman diagrams: to leading order in the instanton parameter of the LST, the $N$ external states are given either by the fundamental building blocks of the theory with $N=1$, or the function that governs the counting of BPS states of a single M5-brane coupling to one M2-brane on either side. These states are connected via an effective coupling function which encodes the details of the gauge algebra of the LST and which in its simplest (non-trivial) form is captured by the scalar Greens function on the torus. More complicated incarnations of this function show certain similarities with so-called modular graph functions, which have appeared in the study of Feynman amplitudes in string- and field theory. Finally, similar structures continue to exist at higher instanton orders, which, however, also contain contributions that can be understood as the action of (Hecke) operators on the leading instanton result.



rate research

Read More

117 - Stefan Hohenegger 2020
In arXiv:1911.08172 we have studied the single-particle free energy of a class of Little String Theories of A-type, which are engineered by $N$ parallel M5-branes on a circle. To leading instanton order (from the perspective of the low energy $U(N)$ gauge theory) and partially also to higher order, a decomposition was observed, which resembles a Feynman diagrammatic expansion: external states are given by expansion coefficients of the $N=1$ BPS free energy and a quasi-Jacobi form that governs the BPS-counting of an M5-brane coupling to two M2-branes. The effective coupling functions were written as infinite series and similarities to modular graph functions were remarked. In the current work we continue and extend this study: Working with the full non-perturbative BPS free energy, we analyse in detail the cases $N=2,3$ and $4$. We argue that in these cases to leading instanton order all coupling functions can be written as a simple combination of two-point functions of a single free scalar field on the torus. We provide closed form expressions, which we conjecture to hold for generic $N$. To higher instanton order, we observe that a decomposition of the free energy in terms of higher point functions with the same external states is still possible but a priori not unique. We nevertheless provide evidence that tentative coupling functions are still combinations of scalar Greens functions, which are decorated with derivatives or multiplied with holomorphic Eisenstein series. We interpret these decorations as corrections of the leading order effective couplings and in particular link the latter to dihedral graph functions with bivalent vertices, which suggests an interpretation in terms of disconnected graphs.
In earlier work we studied features of non-holomorphic modular functions associated with Feynman graphs for a conformal scalar field theory on a two-dimensional torus with zero external momenta at all vertices. Such functions, which we will refer to as modular graph functions, arise, for example, in the low energy expansion of genus-one Type II superstring amplitudes. We here introduce a class of single-valued elliptic multiple polylogarithms, which are defined as elliptic functions associated with Feynman graphs with vanishing external momenta at all but two vertices. These functions depend on a coordinate, $zeta$, on the elliptic curve and reduce to modular graph functions when $zeta$ is set equal to $1$. We demonstrate that these single-valued elliptic multiple polylogarithms are linear combinations of multiple polylogarithms, and that modular graph functions are sums of single-valued elliptic multiple polylogarithms evaluated at the identity of the elliptic curve, in both cases with rational coefficients. This insight suggests the many interrelations between modular graph functions (a few of which were established in earlier papers) may be obtained as a consequence of identities involving multiple polylogarithms, and explains an earlier observation that the coefficients of the Laurent polynomial at the cusp are given by rational numbers times single-valued multiple zeta values.
The concept and the construction of modular graph functions are generalized from genus-one to higher genus surfaces. The integrand of the four-graviton superstring amplitude at genus-two provides a generating function for a special class of such functions. A general method is developed for analyzing the behavior of modular graph functions under non-separating degenerations in terms of a natural real parameter $t$. For arbitrary genus, the Arakelov Green function and the Kawazumi-Zhang invariant degenerate to a Laurent polynomial in $t$ of degree $(1,1)$ in the limit $ttoinfty$. For genus two, each coefficient of the low energy expansion of the string amplitude degenerates to a Laurent polynomial of degree $(w,w)$ in $t$, where $w+2$ is the degree of homogeneity in the kinematic invariants. These results are exact to all orders in $t$, up to exponentially suppressed corrections. The non-separating degeneration of a general class of modular graph functions at arbitrary genus is sketched and similarly results in a Laurent polynomial in $t$ of bounded degree. The coefficients in the Laurent polynomial are generalized modular graph functions for a punctured Riemann surface of lower genus.
We study a class of Little String Theories (LSTs) of A type, described by $N$ parallel M5-branes spread out on a circle and which in the low energy regime engineer supersymmetric gauge theories with $U(N)$ gauge group. The BPS states in this setting correspond to M2-branes stretched between the M5-branes. Generalising an observation made in arXiv:1706.04425, we provide evidence that the BPS counting functions of special subsectors of the latter exhibit a Hecke structure in the Nekrasov-Shatashvili (NS) limit, i.e. the different orders in an instanton expansion of the supersymmetric gauge theory are related through the action of Hecke operators. We extract $N$ distinct such reduced BPS counting functions from the full free energy of the LST with the help of contour integrals with respect to the gauge parameters of the $U(N)$ gauge group. Physically, the states captured by these functions correspond to configurations where the same number of M2-branes is stretched between some of these neighbouring M5-branes, while the remaining M5-branes are collapsed on top of each other and a particular singular contribution is extracted. The Hecke structures suggest that these BPS states form the spectra of symmetric orbifold CFTs. We furthermore show that to leading instanton order (in the NS-limit) the reduced BPS counting functions factorise into simpler building blocks. These building blocks are the expansion coefficients of the free energy for $N=1$ and the expansion of a particular function, which governs the counting of BPS states of a single M5-brane with single M2-branes ending on it on either side. To higher orders in the instanton expansion, we observe new elements appearing in this decomposition, whose coefficients are related through a holomorphic anomaly equation.
60 - Eric DHoker 2019
The integral of an arbitrary two-loop modular graph function over the fundamental domain for $SL(2,Z)$ in the upper half plane is evaluated using recent results on the Poincare series for these functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا