No Arabic abstract
The concept and the construction of modular graph functions are generalized from genus-one to higher genus surfaces. The integrand of the four-graviton superstring amplitude at genus-two provides a generating function for a special class of such functions. A general method is developed for analyzing the behavior of modular graph functions under non-separating degenerations in terms of a natural real parameter $t$. For arbitrary genus, the Arakelov Green function and the Kawazumi-Zhang invariant degenerate to a Laurent polynomial in $t$ of degree $(1,1)$ in the limit $ttoinfty$. For genus two, each coefficient of the low energy expansion of the string amplitude degenerates to a Laurent polynomial of degree $(w,w)$ in $t$, where $w+2$ is the degree of homogeneity in the kinematic invariants. These results are exact to all orders in $t$, up to exponentially suppressed corrections. The non-separating degeneration of a general class of modular graph functions at arbitrary genus is sketched and similarly results in a Laurent polynomial in $t$ of bounded degree. The coefficients in the Laurent polynomial are generalized modular graph functions for a punctured Riemann surface of lower genus.
Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These allow for a systematic evaluation of the low-energy expansion and satisfy many non-trivial algebraic and differential relations. We study these relations in detail, leading to basis decompositions for a large number of modular graph forms which greatly reduce the complexity of the expansions of the integrals appearing in the amplitude. One of the results of this thesis is a Mathematica package which automatizes these simplifications. We use these techniques to compute the leading low-energy orders of the scattering amplitude of four gluons in the heterotic string at one-loop level. Furthermore, we study a generating function which conjecturally contains the torus integrals of all perturbative closed-string theories. We write this generating function in terms of iterated integrals of holomorphic Eisenstein series and use this approach to arrive at a more rigorous characterization of the space of modular graph forms than was possible before. For tree-level string amplitudes, the single-valued map of multiple zeta values maps open-string amplitudes to closed-string amplitudes. The definition of a suitable one-loop generalization, a so-called elliptic single-valued map, is an active area of research and we provide a new perspective on this topic using our generating function of torus integrals. The original version of this thesis, as submitted in June 2020 to the Humboldt University Berlin, is available under the DOI 10.18452/21829. The present text contains minor updates compared to this version, reflecting further developments in the literature, in particular concerning the construction of an elliptic single-valued map.
The integral of an arbitrary two-loop modular graph function over the fundamental domain for $SL(2,Z)$ in the upper half plane is evaluated using recent results on the Poincare series for these functions.
Modular graph forms are a class of modular covariant functions which appear in the genus-one contribution to the low-energy expansion of closed string scattering amplitudes. Modular graph forms with holomorphic subgraphs enjoy the simplifying property that they may be reduced to sums of products of modular graph forms of strictly lower loop order. In the particular case of dihedral modular graph forms, a closed form expression for this holomorphic subgraph reduction was obtained previously by DHoker and Green. In the current work, we extend these results to trihedral modular graph forms. Doing so involves the identification of a modular covariant regularization scheme for certain conditionally convergent sums over discrete momenta, with some elements of the sum being excluded. The appropriate regularization scheme is identified for any number of exclusions, which in principle allows one to perform holomorphic subgraph reduction of higher-point modular graph forms with arbitrary holomorphic subgraphs.
We study the structure of the non-perturbative free energy of a one-parameter class of little string theories (LSTs) of A-type in the so-called unrefined limit. These theories are engineered by $N$ M5-branes probing a transverse flat space. By analysing a number of examples, we observe a pattern which suggests to write the free energy in a fashion that resembles a decomposition into higher-point functions which can be presented in a graphical way reminiscent of sums of (effective) Feynman diagrams: to leading order in the instanton parameter of the LST, the $N$ external states are given either by the fundamental building blocks of the theory with $N=1$, or the function that governs the counting of BPS states of a single M5-brane coupling to one M2-brane on either side. These states are connected via an effective coupling function which encodes the details of the gauge algebra of the LST and which in its simplest (non-trivial) form is captured by the scalar Greens function on the torus. More complicated incarnations of this function show certain similarities with so-called modular graph functions, which have appeared in the study of Feynman amplitudes in string- and field theory. Finally, similar structures continue to exist at higher instanton orders, which, however, also contain contributions that can be understood as the action of (Hecke) operators on the leading instanton result.