Do you want to publish a course? Click here

Adaptive Routing Between Capsules

105   0   0.0 ( 0 )
 Added by Qiang Ren
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Capsule network is the most recent exciting advancement in the deep learning field and represents positional information by stacking features into vectors. The dynamic routing algorithm is used in the capsule network, however, there are some disadvantages such as the inability to stack multiple layers and a large amount of computation. In this paper, we propose an adaptive routing algorithm that can solve the problems mentioned above. First, the low-layer capsules adaptively adjust their direction and length in the routing algorithm and removing the influence of the coupling coefficient on the gradient propagation, so that the network can work when stacked in multiple layers. Then, the iterative process of routing is simplified to reduce the amount of computation and we introduce the gradient coefficient $lambda$. Further, we tested the performance of our proposed adaptive routing algorithm on CIFAR10, Fashion-MNIST, SVHN and MNIST, while achieving better results than the dynamic routing algorithm.

rate research

Read More

We introduce a new routing algorithm for capsule networks, in which a child capsule is routed to a parent based only on agreement between the parents state and the childs vote. The new mechanism 1) designs routing via inverted dot-product attention; 2) imposes Layer Normalization as normalization; and 3) replaces sequential iterative routing with concurrent iterative routing. When compared to previously proposed routing algorithms, our method improves performance on benchmark datasets such as CIFAR-10 and CIFAR-100, and it performs at-par with a powerful CNN (ResNet-18) with 4x fewer parameters. On a different task of recognizing digits from overlayed digit images, the proposed capsule model performs favorably against CNNs given the same number of layers and neurons per layer. We believe that our work raises the possibility of applying capsule networks to complex real-world tasks. Our code is publicly available at: https://github.com/apple/ml-capsules-inverted-attention-routing An alternative implementation is available at: https://github.com/yaohungt/Capsules-Inverted-Attention-Routing/blob/master/README.md
Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. This is made possible via the introduction of locally-constrained routing and transformation matrix sharing, which reduces the parameter/memory burden and allows for the segmentation of objects at large resolutions. To compensate for the loss of global information in constraining the routing, we propose the concept of deconvolutional capsules to create a deep encoder-decoder style network, called SegCaps. We extend the masked reconstruction regularization to the task of segmentation and perform thorough ablation experiments on each component of our method. The proposed convolutional-deconvolutional capsule network, SegCaps, shows state-of-the-art results while using a fraction of the parameters of popular segmentation networks. To validate our proposed method, we perform experiments segmenting pathological lungs from clinical and pre-clinical thoracic computed tomography (CT) scans and segmenting muscle and adipose (fat) tissue from magnetic resonance imaging (MRI) scans of human subjects thighs. Notably, our experiments in lung segmentation represent the largest-scale study in pathological lung segmentation in the literature, where we conduct experiments across five extremely challenging datasets, containing both clinical and pre-clinical subjects, and nearly 2000 computed-tomography scans. Our newly developed segmentation platform outperforms other methods across all datasets while utilizing less than 5% of the parameters in the popular U-Net for biomedical image segmentation. Further, we demonstrate capsules ability to generalize to unseen rotations/reflections on natural images.
In this work we seek to bridge the concepts of topographic organization and equivariance in neural networks. To accomplish this, we introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables. We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST. Furthermore, through topographic organization over time (i.e. temporal coherence), we demonstrate how predefined latent space transformation operators can be encouraged for observed transformed input sequences -- a primitive form of unsupervised learned equivariance. We demonstrate that this model successfully learns sets of approximately equivariant features (i.e. capsules) directly from sequences and achieves higher likelihood on correspondingly transforming test sequences. Equivariance is verified quantitatively by measuring the approximate commutativity of the inference network and the sequence transformations. Finally, we demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
Abundant real-world data can be naturally represented by large-scale networks, which demands efficient and effective learning algorithms. At the same time, labels may only be available for some networks, which demands these algorithms to be able to adapt to unlabeled networks. Domain-adaptive hash learning has enjoyed considerable success in the computer vision community in many practical tasks due to its lower cost in both retrieval time and storage footprint. However, it has not been applied to multiple-domain networks. In this work, we bridge this gap by developing an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH. Specifically, we develop four {task-specific yet correlated} components: (1) network structure preservation via a hard groupwise contrastive loss, (2) relaxation-free supervised hashing, (3) cross-domain intersected discriminators, and (4) semantic center alignment. We conduct a wide range of experiments to evaluate the effectiveness and efficiency of our method on a range of tasks including link prediction, node classification, and neighbor recommendation. Our evaluation results demonstrate that our model achieves better performance than the state-of-the-art conventional discrete embedding methods over all the tasks.
Convolutional neural network based systems have largely failed to be adopted in many high-risk application areas, including healthcare, military, security, transportation, finance, and legal, due to their highly uninterpretable black-box nature. Towards solving this deficiency, we teach a novel multi-task capsule network to improve the explainability of predictions by embodying the same high-level language used by human-experts. Our explainable capsule network, X-Caps, encodes high-level visual object attributes within the vectors of its capsules, then forms predictions based solely on these human-interpretable features. To encode attributes, X-Caps utilizes a new routing sigmoid function to independently route information from child capsules to parents. Further, to provide radiologists with an estimate of model confidence, we train our network on a distribution of expert labels, modeling inter-observer agreement and punishing over/under confidence during training, supervised by human-experts agreement. X-Caps simultaneously learns attribute and malignancy scores from a multi-center dataset of over 1000 CT scans of lung cancer screening patients. We demonstrate a simple 2D capsule network can outperform a state-of-the-art deep dense dual-path 3D CNN at capturing visually-interpretable high-level attributes and malignancy prediction, while providing malignancy prediction scores approaching that of non-explainable 3D CNNs. To the best of our knowledge, this is the first study to investigate capsule networks for making predictions based on radiologist-level interpretable attributes and its applications to medical image diagnosis. Code is publicly available at https://github.com/lalonderodney/X-Caps .

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا