Do you want to publish a course? Click here

Gain dynamics in a heterogeneous terahertz quantum cascade laser

363   0   0.0 ( 0 )
 Added by Giacomo Scalari
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gain recovery time of a heterogeneous active region terahertz quantum cascade laser is studied by terahertz-pump,i terahertz-probe spectroscopy. The investigated active region, which is based on a bound-to-continuum optical transition with an optical phonon assisted extraction, exhibits a gain recovery time in the range of 34$,$-$,$50$,$ps dependent on the operation condition of the laser. The recovery time gets shorter for stronger pumping of the laser while the recovery dynamics slows down with increasing operation temperature. These results indicate the important role of the intracavity light intensity for the fast gain recovery.

rate research

Read More

The effectiveness of self-mixing interferometry has been demonstrated across the electromagnetic spectrum, from visible to microwave frequencies, in a plethora of sensing applications, ranging from distance measurement to material analysis, microscopy and coherent imaging. Owing to their intrinsic stability to optical feedback, quantum cascade lasers (QCLs) represent a source that offers unique and versatile characteristics to further improve the self-mixing functionality at mid infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision deeply subwalength (< {lambda}/6000) mechanical vibrations of a suspended Si3N4-membrane used as the external element of a THz QCL feedback interferometric apparatus. Besides representing a platform for the characterization of small displacements, our self-mixing configuration can be exploited for the realization of optomechanical systems, where several laser sources can be linked together through a common mechanical microresonator actuated by radiation pressure.
The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions
We cast a theoretical model based on Effective Semiconductor Maxwell-Bloch Equations and study the dynamics of a multi-mode mid-Infrared Quantum Cascade Laser in Fabry Perot with the aim to investigate the spontaneous generation of optical frequency combs. This model encompasses the key features of a semiconductor active medium such as asymmetric,frequency-dependent gain and refractive index as well as the phase-amplitude coupling of the field dynamics provided by the linewidth enhancement factor. Our numerical simulations are in excellent agreement with recent experimental results, showing broad ranges of comb formationin locked regimes, separated by chaotic dynamics when the field modes unlock. In the former case, we identify self-confined structures travelling along the cavity, while the instantaneous frequency is characterized by a linear chirp behaviour. In such regimes we show that OFC are characterized by concomitant and relevant amplitude and frequency modulation.
117 - F. P. Mezzapesa 2020
The ability to engineer quantum-cascade-lasers (QCLs) with ultrabroad gain spectra and with a full compensation of the group velocity dispersion, at Terahertz (THz) frequencies, is a fundamental need for devising monolithic and miniaturized optical frequency-comb-synthesizers (FCS) in the far-infrared. In a THz QCL four-wave mixing, driven by the intrinsic third-order susceptibility of the intersubband gain medium, self-lock the optical modes in phase, allowing stable comb operation, albeit over a restricted dynamic range (~ 20% of the laser operational range). Here, we engineer miniaturized THz FCSs comprising a heterogeneous THz QCL integrated with a tightly-coupled on-chip solution-processed graphene saturable-absorber reflector that preserves phase-coherence between lasing modes even when four-wave mixing no longer provides dispersion compensation. This enables a high-power (8 mW) FCS with over 90 optical modes to be demonstrated, over more than 55% of the laser operational range. Furthermore, stable injection-locking is showed, paving the way to impact a number of key applications, including high-precision tuneable broadband-spectroscopy and quantum-metrology.
Optical frequency comb synthesizers (FCs) [1] are laser sources covering a broad spectral range with a number of discrete, equally spaced and highly coherent frequency components, fully controlled through only two parameters: the frequency separation between adjacent modes and the carrier offset frequency. Providing a phase-coherent link between the optical and the microwave/radio-frequency regions [2], FCs have become groundbreaking tools for precision measurements[3,4]. Despite these inherent advantages, developing miniaturized comb sources across the whole infrared (IR), with an independent and simultaneous control of the two comb degrees of freedom at a metrological level, has not been possible, so far. Recently, promising results have been obtained with compact sources, namely diode-laser-pumped microresonators [5,6] and quantum cascade lasers (QCL-combs) [7,8]. While both these sources rely on four-wave mixing (FWM) to generate comb frequency patterns, QCL-combs benefit from a mm-scale miniaturized footprint, combined with an ad-hoc tailoring of the spectral emission in the 3-250 {mu}m range, by quantum engineering [9]. Here, we demonstrate full stabilization and control of the two key parameters of a QCL-comb against the primary frequency standard. Our technique, here applied to a far-IR emitter and open ended to other spectral windows, enables Hz-level narrowing of the individual comb modes, and metrological-grade tuning of their individual frequencies, which are simultaneously measured with an accuracy of 2x10^-12, limited by the frequency reference used. These fully-controlled, frequency-scalable, ultra-compact comb emitters promise to pervade an increasing number of mid- and far-IR applications, including quantum technologies, due to the quantum nature of the gain media [10].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا