Do you want to publish a course? Click here

Coherent multi-mode dynamics in a Quantum Cascade Laser: Amplitude and Frequency-modulated Optical Frequency Combs

100   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We cast a theoretical model based on Effective Semiconductor Maxwell-Bloch Equations and study the dynamics of a multi-mode mid-Infrared Quantum Cascade Laser in Fabry Perot with the aim to investigate the spontaneous generation of optical frequency combs. This model encompasses the key features of a semiconductor active medium such as asymmetric,frequency-dependent gain and refractive index as well as the phase-amplitude coupling of the field dynamics provided by the linewidth enhancement factor. Our numerical simulations are in excellent agreement with recent experimental results, showing broad ranges of comb formationin locked regimes, separated by chaotic dynamics when the field modes unlock. In the former case, we identify self-confined structures travelling along the cavity, while the instantaneous frequency is characterized by a linear chirp behaviour. In such regimes we show that OFC are characterized by concomitant and relevant amplitude and frequency modulation.

rate research

Read More

Quantum cascade lasers are proving to be instrumental in the development of compact frequency comb sources at mid-infrared and terahertz frequencies. Here we demonstrate a heterogeneous terahertz quantum cascade laser with two active regions spaced exactly by one octave. Both active regions are based on a four-quantum well laser design and they emit a combined 3~mW peak power at 15~K in pulsed mode. The two central frequencies are 2.3~THz (bandwidth 300~GHz) and 4.6~THz (bandwidth 270~GHz). The structure is engineered in a way that allows simultaneous operation of the two active regions in the comb regime, serving as a double comb source as well as a test bench structure for all waveguide internal self-referencing techniques. Narrow RF beatnotes ($sim$ 15~kHz) are recorded showing the simultaneous operation of the two combs, whose free-running coherence properties are investigated by means of beatnote spectroscopy performed both with an external detector and via self-mixing. Comb operation in a highly dispersive region (4.6~THz) relying only on gain bandwidth engineering shows the potential for broad spectral coverage with compact comb sources.
Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multi-heterodyne spectroscopy using two terahertz quantum cascade laser combs. With just 100 $mu$s of integration time, we achieve peak signal-to-noise ratios exceeding 60 dB and a spectral coverage greater than 250 GHz centered at 2.8 THz. Even with room-temperature detectors we are able to achieve peak signal-to-noise ratios of 50 dB, and as a proof-of-principle we use these combs to measure the broadband transmission spectrum of etalon samples. Finally, we show that with proper signal processing, it is possible to extend the multi-heterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode, greatly expanding the range of quantum cascade lasers that could be suitable for these techniques.
We present homogeneous quantum cascade lasers (QCLs) emitting around 3 THz which display bandwidths up to 950 GHz with a single stable beatnote. Devices are spontaneously operating in a harmonic comb state, and when in a dense mode regime they can be injection locked at the cavity roundtrip frequency with very small RF powers down to -55 dBm. When operated in the electrically unstable region of negative differential resistance, the device displays ultra-broadband operation exceeding 1.83 THz ($Delta f/f=50%$) with high phase noise, exhibiting self-sustained, periodic voltage oscillations. The low CW threshold (115 A$cdot$ cm$^{-2}$) and broadband comb operation ($Delta f/f=25%$) make these sources extremely appealing for on-chip frequency comb applications.
The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions
Optical frequency comb synthesizers (FCs) [1] are laser sources covering a broad spectral range with a number of discrete, equally spaced and highly coherent frequency components, fully controlled through only two parameters: the frequency separation between adjacent modes and the carrier offset frequency. Providing a phase-coherent link between the optical and the microwave/radio-frequency regions [2], FCs have become groundbreaking tools for precision measurements[3,4]. Despite these inherent advantages, developing miniaturized comb sources across the whole infrared (IR), with an independent and simultaneous control of the two comb degrees of freedom at a metrological level, has not been possible, so far. Recently, promising results have been obtained with compact sources, namely diode-laser-pumped microresonators [5,6] and quantum cascade lasers (QCL-combs) [7,8]. While both these sources rely on four-wave mixing (FWM) to generate comb frequency patterns, QCL-combs benefit from a mm-scale miniaturized footprint, combined with an ad-hoc tailoring of the spectral emission in the 3-250 {mu}m range, by quantum engineering [9]. Here, we demonstrate full stabilization and control of the two key parameters of a QCL-comb against the primary frequency standard. Our technique, here applied to a far-IR emitter and open ended to other spectral windows, enables Hz-level narrowing of the individual comb modes, and metrological-grade tuning of their individual frequencies, which are simultaneously measured with an accuracy of 2x10^-12, limited by the frequency reference used. These fully-controlled, frequency-scalable, ultra-compact comb emitters promise to pervade an increasing number of mid- and far-IR applications, including quantum technologies, due to the quantum nature of the gain media [10].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا