Do you want to publish a course? Click here

N-HANS: Introducing the Augsburg Neuro-Holistic Audio-eNhancement System

76   0   0.0 ( 0 )
 Added by Shuo Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

N-HANS is a Python toolkit for in-the-wild audio enhancement, including speech, music, and general audio denoising, separation, and selective noise or source suppression. The functionalities are realised based on two neural network models sharing the same architecture, but trained separately. The models are comprised of stacks of residual blocks, each conditioned on additional speech or environmental noise recordings for adapting to different unseen speakers or environments in real life. In addition to a Python API, a command line interface is provided to researchers and developers, both of which are documented at https://github.com/N-HANS/N-HANS. Experimental results indicate that N-HANS achieves outstanding performance, and ensure its reliable usage in real-life audio and speech-related tasks, reaching very high audio and speech quality.



rate research

Read More

Generating music with emotion similar to that of an input video is a very relevant issue nowadays. Video content creators and automatic movie directors benefit from maintaining their viewers engaged, which can be facilitated by producing novel material eliciting stronger emotions in them. Moreover, theres currently a demand for more empathetic computers to aid humans in applications such as augmenting the perception ability of visually and/or hearing impaired people. Current approaches overlook the videos emotional characteristics in the music generation step, only consider static images instead of videos, are unable to generate novel music, and require a high level of human effort and skills. In this study, we propose a novel hybrid deep neural network that uses an Adaptive Neuro-Fuzzy Inference System to predict a videos emotion from its visual features and a deep Long Short-Term Memory Recurrent Neural Network to generate its corresponding audio signals with similar emotional inkling. The former is able to appropriately model emotions due to its fuzzy properties, and the latter is able to model data with dynamic time properties well due to the availability of the previous hidden state information. The novelty of our proposed method lies in the extraction of visual emotional features in order to transform them into audio signals with corresponding emotional aspects for users. Quantitative experiments show low mean absolute errors of 0.217 and 0.255 in the Lindsey and DEAP datasets respectively, and similar global features in the spectrograms. This indicates that our model is able to appropriately perform domain transformation between visual and audio features. Based on experimental results, our model can effectively generate audio that matches the scene eliciting a similar emotion from the viewer in both datasets, and music generated by our model is also chosen more often.
81 - Hendrik Purwins 2019
Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.
In recent years, music source separation has been one of the most intensively studied research areas in music information retrieval. Improvements in deep learning lead to a big progress in music source separation performance. However, most of the previous studies are restricted to separating a few limited number of sources, such as vocals, drums, bass, and other. In this study, we propose a network for audio query-based music source separation that can explicitly encode the source information from a query signal regardless of the number and/or kind of target signals. The proposed method consists of a Query-net and a Separator: given a query and a mixture, the Query-net encodes the query into the latent space, and the Separator estimates masks conditioned by the latent vector, which is then applied to the mixture for separation. The Separator can also generate masks using the latent vector from the training samples, allowing separation in the absence of a query. We evaluate our method on the MUSDB18 dataset, and experimental results show that the proposed method can separate multiple sources with a single network. In addition, through further investigation of the latent space we demonstrate that our method can generate continuous outputs via latent vector interpolation.
Most modern text-to-speech architectures use a WaveNet vocoder for synthesizing high-fidelity waveform audio, but there have been limitations, such as high inference time, in its practical application due to its ancestral sampling scheme. The recently suggested Parallel WaveNet and ClariNet have achieved real-time audio synthesis capability by incorporating inverse autoregressive flow for parallel sampling. However, these approaches require a two-stage training pipeline with a well-trained teacher network and can only produce natural sound by using probability distillation along with auxiliary loss terms. We propose FloWaveNet, a flow-based generative model for raw audio synthesis. FloWaveNet requires only a single-stage training procedure and a single maximum likelihood loss, without any additional auxiliary terms, and it is inherently parallel due to the characteristics of generative flow. The model can efficiently sample raw audio in real-time, with clarity comparable to previous two-stage parallel models. The code and samples for all models, including our FloWaveNet, are publicly available.
We present a learning-based approach for generating binaural audio from mono audio using multi-task learning. Our formulation leverages additional information from two related tasks: the binaural audio generation task and the flipped audio classification task. Our learning model extracts spatialization features from the visual and audio input, predicts the left and right audio channels, and judges whether the left and right channels are flipped. First, we extract visual features using ResNet from the video frames. Next, we perform binaural audio generation and flipped audio classification using separate subnetworks based on visual features. Our learning method optimizes the overall loss based on the weighted sum of the losses of the two tasks. We train and evaluate our model on the FAIR-Play dataset and the YouTube-ASMR dataset. We perform quantitative and qualitative evaluations to demonstrate the benefits of our approach over prior techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا