Do you want to publish a course? Click here

Learning Behavioral Representations from Wearable Sensors

70   0   0.0 ( 0 )
 Added by Nazgol Tavabi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Continuous collection of physiological data from wearable sensors enables temporal characterization of individual behaviors. Understanding the relation between an individuals behavioral patterns and psychological states can help identify strategies to improve quality of life. One challenge in analyzing physiological data is extracting the underlying behavioral states from the temporal sensor signals and interpreting them. Here, we use a non-parametric Bayesian approach to model sensor data from multiple people and discover the dynamic behaviors they share. We apply this method to data collected from sensors worn by a population of hospital workers and show that the learned states can cluster participants into meaningful groups and better predict their cognitive and psychological states. This method offers a way to learn interpretable compact behavioral representations from multivariate sensor signals.



rate research

Read More

In this paper, we investigate the suitability of state-of-the-art representation learning methods to the analysis of behavioral similarity of moving individuals, based on CDR trajectories. The core of the contribution is a novel methodological framework, mob2vec, centered on the combined use of a recent symbolic trajectory segmentation method for the removal of noise, a novel trajectory generalization method incorporating behavioral information, and an unsupervised technique for the learning of vector representations from sequential data. Mob2vec is the result of an empirical study conducted on real CDR data through an extensive experimentation. As a result, it is shown that mob2vec generates vector representations of CDR trajectories in low dimensional spaces which preserve the similarity of the mobility behavior of individuals.
Imitation Learning (IL) is a machine learning approach to learn a policy from a dataset of demonstrations. IL can be useful to kick-start learning before applying reinforcement learning (RL) but it can also be useful on its own, e.g. to learn to imitate human players in video games. However, a major limitation of current IL approaches is that they learn only a single average policy based on a dataset that possibly contains demonstrations of numerous different types of behaviors. In this paper, we propose a new approach called Behavioral Repertoire Imitation Learning (BRIL) that instead learns a repertoire of behaviors from a set of demonstrations by augmenting the state-action pairs with behavioral descriptions. The outcome of this approach is a single neural network policy conditioned on a behavior description that can be precisely modulated. We apply this approach to train a policy on 7,777 human replays to perform build-order planning in StarCraft II. Principal Component Analysis (PCA) is applied to construct a low-dimensional behavioral space from the high-dimensional army unit composition of each demonstration. The results demonstrate that the learned policy can be effectively manipulated to express distinct behaviors. Additionally, by applying the UCB1 algorithm, we are able to adapt the behavior of the policy - in-between games - to reach a performance beyond that of the traditional IL baseline approach.
Since stress contributes to a broad range of mental and physical health problems, the objective assessment of stress is essential for behavioral and physiological studies. Although several studies have evaluated stress levels in controlled settings, objective stress assessment in everyday settings is still largely under-explored due to challenges arising from confounding contextual factors and limited adherence for self-reports. In this paper, we explore the objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV) captured via low-cost and easy-to-wear photoplethysmography (PPG) sensors that are widely available on newer smart wearable devices. We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling. We captured the stress levels of fourteen volunteers through self-reported questionnaires over periods of between 1-3 months, and explored binary stress detection based on HR and HRV using Machine Learning Methods. We observe promising preliminary results given that the dataset is collected in the challenging environments of everyday settings. The binary stress detector is fairly accurate and can detect stressful vs non-stressful samples with a macro-F1 score of up to %76. Our study lays the groundwork for more sophisticated labeling strategies that generate context-aware, personalized models that will empower health professionals to provide personalized interventions.
Wearables are fundamental to improving our understanding of human activities, especially for an increasing number of healthcare applications from rehabilitation to fine-grained gait analysis. Although our collective know-how to solve Human Activity Recognition (HAR) problems with wearables has progressed immensely with end-to-end deep learning paradigms, several fundamental opportunities remain overlooked. We rigorously explore these new opportunities to learn enriched and highly discriminating activity representations. We propose: i) learning to exploit the latent relationships between multi-channel sensor modalities and specific activities; ii) investigating the effectiveness of data-agnostic augmentation for multi-modal sensor data streams to regularize deep HAR models; and iii) incorporating a classification loss criterion to encourage minimal intra-class representation differences whilst maximising inter-class differences to achieve more discriminative features. Our contributions achieves new state-of-the-art performance on four diverse activity recognition problem benchmarks with large margins -- with up to 6% relative margin improvement. We extensively validate the contributions from our design concepts through extensive experiments, including activity misalignment measures, ablation studies and insights shared through both quantitative and qualitative studies.
One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinsons disease.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا