No Arabic abstract
Today, children are increasingly connected to the Internet and consume content and services through various means. It has been a challenge for less tech-savvy parents to protect children from harmful content and services. Internet of Things (IoT) has made the situation much worse as IoT devices allow children to connect to the Internet in novel ways (e.g., connected refrigerators, TVs, and so on). In this paper, we propose mySafeHome, an approach which utilises family dynamics to provide a more natural, and intuitive access control mechanism to protect children from harmful content and services in the context of IoT. In mySafeHome, access control dynamically adapts based on the physical distance between family members. For example, a particular type of content can only be consumed, through TV, by children if the parents are in the same room (or hearing distance). mySafeHome allows parents to assess a given content by themselves. Our approach also aims to create granular levels of access control (e.g., block / limit certain content, features, services, on certain devices when the parents are not in the vicinity). We developed a prototype using OpenHAB and several smart home devices to demonstrate the proposed approach. We believe that our approach also facilitates the creation of better relationships between family members. A demo can be viewed here: http://safehome.technology/demo.
With the prevalence of Internet of Things (IoT) applications, IoT devices interact closely with our surrounding environments, bringing us unparalleled smartness and convenience. However, the development of secure IoT solutions is getting a long way lagged behind, making us exposed to common unauthorized accesses that may bring malicious attacks and unprecedented danger to our daily life. Overprivilege attack, a widely reported phenomenon in IoT that accesses unauthorized or excessive resources, is notoriously hard to prevent, trace and mitigate. To tackle this challenge, we propose Tokoin-Based Access Control (TBAC), an accountable access control model enabled by blockchain and Trusted Execution Environment (TEE) technologies, to offer fine-graininess, strong auditability, and access procedure control for IoT. TBAC materializes the virtual access power into a definite-amount and secure cryptographic coin termed tokoin (token+coin), and manages it using atomic and accountable state-transition functions in a blockchain. We also realize access procedure control by mandating every tokoin a fine-grained access policy defining who is allowed to do what at when in where by how. The tokoin is peer-to-peer transferable, and can be modified only by the resource owner when necessary. We fully implement TBAC with well-studied cryptographic primitives and blockchain platforms and present a readily available APP for regular users. We also present a case study to demonstrate how TBAC is employed to enable autonomous in-home cargo delivery while guaranteeing the access policy compliance and home owners physical security by regulating the physical behaviors of the deliveryman.
The balance between protecting users privacy while providing cost-effective devices that are functional and usable is a key challenge in the burgeoning Internet of Things (IoT) industry. While in traditional desktop and mobile contexts the primary user interface is a screen, in IoT screens are rare or very small, which invalidate most of the traditional approaches. We examine how end-users interact with IoT products and how those products convey information back to the users, particularly `what is going on with regards to their data. We focus on understanding what the breadth of IoT, privacy, and ubiquitous computing literature tells us about how individuals with average technical expertise can be notified about the privacy-related information of the spaces they inhabit in an easily understandable way. In this survey, we present a review of the various methods available to notify the end-users while taking into consideration the factors that should be involved in the notification alerts within the physical domain. We identify five main factors: (1) data type, (2) data usage, (3) data storage, (4) data retention period, and (5) notification method. The survey also includes literature discussing individuals reactions and their potentials to provide feedback about their privacy choices as a response to the received notification. The results of this survey highlight the most effective mechanisms for providing awareness of privacy and data-use-practices in the context of IoT in shared spaces.
We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.
The Internet of Things (IoT) is already transforming industries, cities, and homes. The economic value of this transformation across all industries is estimated to be trillions of dollars and the societal impact on energy efficiency, health, and productivity are enormous. Alongside potential benefits of interconnected smart devices comes increased risk and potential for abuse when embedding sensing and intelligence into every device. One of the core problems with the increasing number of IoT devices is the increased complexity that is required to operate them safely and securely. This increased complexity creates new safety, security, privacy, and usability challenges far beyond the difficult challenges individuals face just securing a single device. We highlight some of the negative trends that smart devices and collections of devices cause and we argue that issues related to security, physical safety, privacy, and usability are tightly interconnected and solutions that address all four simultaneously are needed. Tight safety and security standards for individual devices based on existing technology are needed. Likewise research that determines the best way for individuals to confidently manage collections of devices must guide the future deployments of such systems.
The Internet of Things (IoT) is one of the emerging technologies that has grabbed the attention of researchers from academia and industry. The idea behind Internet of things is the interconnection of internet enabled things or devices to each other and to humans, to achieve some common goals. In near future IoT is expected to be seamlessly integrated into our environment and human will be wholly solely dependent on this technology for comfort and easy life style. Any security compromise of the system will directly affect human life. Therefore security and privacy of this technology is foremost important issue to resolve. In this paper we present a thorough study of security problems in IoT and classify possible cyberattacks on each layer of IoT architecture. We also discuss challenges to traditional security solutions such as cryptographic solutions, authentication mechanisms and key management in IoT. Device authentication and access controls is an essential area of IoT security, which is not surveyed so far. We spent our efforts to bring the state of the art device authentication and access control techniques on a single paper.