Do you want to publish a course? Click here

Internet of Things Security, Device Authentication and Access Control: A Review

156   0   0.0 ( 0 )
 Added by Inayat Ali
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The Internet of Things (IoT) is one of the emerging technologies that has grabbed the attention of researchers from academia and industry. The idea behind Internet of things is the interconnection of internet enabled things or devices to each other and to humans, to achieve some common goals. In near future IoT is expected to be seamlessly integrated into our environment and human will be wholly solely dependent on this technology for comfort and easy life style. Any security compromise of the system will directly affect human life. Therefore security and privacy of this technology is foremost important issue to resolve. In this paper we present a thorough study of security problems in IoT and classify possible cyberattacks on each layer of IoT architecture. We also discuss challenges to traditional security solutions such as cryptographic solutions, authentication mechanisms and key management in IoT. Device authentication and access controls is an essential area of IoT security, which is not surveyed so far. We spent our efforts to bring the state of the art device authentication and access control techniques on a single paper.

rate research

Read More

With the prevalence of Internet of Things (IoT) applications, IoT devices interact closely with our surrounding environments, bringing us unparalleled smartness and convenience. However, the development of secure IoT solutions is getting a long way lagged behind, making us exposed to common unauthorized accesses that may bring malicious attacks and unprecedented danger to our daily life. Overprivilege attack, a widely reported phenomenon in IoT that accesses unauthorized or excessive resources, is notoriously hard to prevent, trace and mitigate. To tackle this challenge, we propose Tokoin-Based Access Control (TBAC), an accountable access control model enabled by blockchain and Trusted Execution Environment (TEE) technologies, to offer fine-graininess, strong auditability, and access procedure control for IoT. TBAC materializes the virtual access power into a definite-amount and secure cryptographic coin termed tokoin (token+coin), and manages it using atomic and accountable state-transition functions in a blockchain. We also realize access procedure control by mandating every tokoin a fine-grained access policy defining who is allowed to do what at when in where by how. The tokoin is peer-to-peer transferable, and can be modified only by the resource owner when necessary. We fully implement TBAC with well-studied cryptographic primitives and blockchain platforms and present a readily available APP for regular users. We also present a case study to demonstrate how TBAC is employed to enable autonomous in-home cargo delivery while guaranteeing the access policy compliance and home owners physical security by regulating the physical behaviors of the deliveryman.
The Internet of Things has received a lot of research attention. It is considered part of the Internet of the future and is made up of billions of intelligent communication. The future of the Internet will consist of heterogeneously connected devices that expand the world boundaries with physical entities and virtual components. It provides new functionality for related things. This study systematically examines the definition, architecture, essential technologies, and applications of the Internet of Things. We will introduce various definitions of the Internet of Things. Then, it will be discussed new techniques for implementing the Internet of Things and several open issues related to the Internet of Things applications will be investigated. Finally, the key challenges that need to be addressed by the research community and possible solutions to address them are investigated.
Fog computing is an emerging computing paradigm that has come into consideration for the deployment of IoT applications amongst researchers and technology industries over the last few years. Fog is highly distributed and consists of a wide number of autonomous end devices, which contribute to the processing. However, the variety of devices offered across different users are not audited. Hence, the security of Fog devices is a major concern in the Fog computing environment. Furthermore, mitigating and preventing those security measures is a research issue. Therefore, to provide the necessary security for Fog devices, we need to understand what the security concerns are with regards to Fog. All aspects of Fog security, which have not been covered by other literature works needs to be identified and need to be aggregate all issues in Fog security. It needs to be noted that computation devices consist of many ordinary users, and are not managed by any central entity or managing body. Therefore, trust and privacy is also a key challenge to gain market adoption for Fog. To provide the required trust and privacy, we need to also focus on authentication, threats and access control mechanisms as well as techniques in Fog computing. In this paper, we perform a survey and propose a taxonomy, which presents an overview of existing security concerns in the context of the Fog computing paradigm. We discuss the Blockchain-based solutions towards a secure Fog computing environment and presented various research challenges and directions for future research.
This paper analyses the various authentication systems implemented for enhanced security and private re-position of an individuals log-in credentials. The first part of the paper describes the multi-factor authentication (MFA) systems, which, though not applicable to the field of Internet of Things, provides great security to a users credentials. MFA is followed by a brief description of the working mechanism of interaction of third party clients with private resources over the OAuth protocol framework and a study of the delegation based authentication system in IP-based IoT.
The Internet of Medical Things (IoMT) are increasing the accuracy, reliability, and the production capability of electronic devices by playing a very important part in the industry of healthcare. The available medical resources and services related to healthcare are working to get an interconnection with each other by the digital healthcare system by the contribution of the researchers. Sensors, wearable devices, medical devices, and clinical devices are all connected to form an ecosystem of the Internet of Medical Things. The different applications of healthcare are enabled by the Internet of Medical Things to reduce the healthcare costs, to attend the medical responses on time and it also helps in increasing the quality of the medical treatment. The healthcare industry is transformed by the Internet of Medical Things as it delivers targeted and personalized medical care and it also seamlessly enables the communication of medical data. Devices used in the medical field and their application are connected to the system of healthcare of Information technology with the help of the digital world.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا