Do you want to publish a course? Click here

Idealised simulations of the deep atmosphere of hot jupiters: Deep, hot, adiabats as a robust solution to the radius inflation problem

100   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: The anomalously large radii of hot Jupiters has long been a mystery. However, by combining both theoretical arguments and 2D models, a recent study has suggested that the vertical advection of potential temperature leads to an adiabatic temperature profile in the deep atmosphere hotter than the profile obtained with standard 1D models. Aims: In order to confirm the viability of that scenario, we extend this investigation to three dimensional, time-dependent, models. Methods: We use a 3D GCM, DYNAMICO to perform a series of calculations designed to explore the formation and structure of the driving atmospheric circulations, and detail how it responds to changes in both upper and deep atmospheric forcing. Results: In agreement with the previous, 2D, study, we find that a hot adiabat is the natural outcome of the long-term evolution of the deep atmosphere. Integration times of order $1500$ years are needed for that adiabat to emerge from an isothermal atmosphere, explaining why it has not been found in previous hot Jupiter studies. Models initialised from a hotter deep atmosphere tend to evolve faster toward the same final state. We also find that the deep adiabat is stable against low-levels of deep heating and cooling, as long as the Newtonian cooling time-scale is longer than $sim 3000$ years at $200$ bar. Conclusions: We conclude that the steady-state vertical advection of potential temperature by deep atmospheric circulations constitutes a robust mechanism to explain hot Jupiter inflated radii. We suggest that future studies of hot Jupiters are evolved for a longer time than currently done, and, when possible, include models initialised with a hot deep adiabat. We stress that this mechanism stems from the advection of entropy by irradiation induced mass flows and does not require (finely tuned) dissipative process, in contrast with most previously suggested scenarios.



rate research

Read More

Hot stars with hot Jupiters have a wide range of obliquities, while cool stars with hot Jupiters tend to have low obliquities. An enticing explanation for this pattern is tidal realignment of the cool host stars, although this explanation assumes that obliquity damping occurs faster than orbital decay, an assumption that needs further exploration. Here we revisit this tidal realignment problem, building on previous work identifying a low-frequency component of the time-variable tidal potential that affects the obliquity but not the orbital separation. We adopt a recent empirically-based model for the stellar tidal quality factor and its sharp increase with forcing frequency. This leads to enhanced dissipation at low frequencies, and efficient obliquity damping. We model the tidal evolution of 46 observed hot Jupiters orbiting cool stars. A key parameter is the stellar age, which we determine in a homogeneous manner for the sample, taking advantage of Gaia DR2 data. We explore a variety of tidal histories and futures for each system, finding in most cases that the stellar obliquity is successfully damped before the planet is destroyed. A testable prediction of our model is that hot-Jupiter hosts with orbital periods shorter than 2--3 days should have obliquities much smaller than $1^circ$. With the possible exception of WASP-19b, the predicted future lifetimes of the planets range from $10^8$,yr to more than $10^{10}$,yr. Thus, our model implies that these hot Jupiters are probably not in immediate danger of being devoured by their host stars while they are on the main sequence.
We investigate the impact on convective numerical simulations of thermo-compositional diabatic processes. We focus our study on simulations with a stabilizing temperature gradient and a destabilizing mean-molecular weight gradient. We aim to establish the possibility for a reduced temperature-gradient in such setups. A suite of 3D simulations were conducted using a numerical hydrodynamic code. We used as a simplified test case, a sample region of the secondary atmosphere of a hot rocky exoplanet within which the chemical transition CO+O $leftrightarrow$ CO$_{2}$ could occur. Newtonian cooling and a chemical source term was used to maintain a negative mean molecular weight gradient. Our results demonstrate that this setup can reduce the temperature gradient, a result which does not converge away with resolution or over time. We also show that the presence of the reduced temperature gradient is a function of the forcing timescales. The above transition leads to a bifurcation of the temperature profile when the chemical forcing is fast, reminiscent of the bifurcation seen in the boiling crisis for steam/liquid convection. With the reduced temperature gradient in these idealized setups, there exists the possibility for an analogy of the reddening (currently observed in the spectra of brown dwarfs) in the spectra of rocky exoplanet atmospheres. Detailed 1D modelling is needed, in order to characterize the equilibrium thermal and compositional gradients, the timescales, and the impact of a realistic equation of state, in order to assess if the regime identified here will develop in realistic situations. This possibility cannot, however, be excluded a priori. This prediction is new for terrestrial atmospheres and represents strong motivation for the use of diabatic models when analysing atmospheric spectra of rocky exoplanets that will be observed with e.g. the James Webb Space Telescope.
The observed low densities of gas giant planets with a high equilibrium temperature can be simulated in models when a fraction of the surface radiation is deposited deeper in the interior. Meanwhile migration theories suggest that hot Jupiters formed further away from their host-star and migrated inward. We incorporate disk migration in simulations of the evolving interior of hot Jupiters to determine whether migration has a long lasting effect on the inflation of planets. We quantify the difference between the radius of a migrated planet and the radius of a planet that formed in situ as the radius discrepancy. We remain agnostic about the physical mechanism behind interior heating, but assume it scales with the received stellar flux by a certain fraction. We find that the change in irradiation received from the host-star while the planet is migrating can affect the inflation and final radius of the planet. Models with a high fraction of energy deposited in the interior ( > 5%) show a significant radius discrepancy when the deposit is at higher pressures than P=1 bar. For a smaller fraction of 1%, there is no radius discrepancy for any deposit depth. We show that a uniform heating mechanism can cause different rates of inflation, depending on the migration history. If the forthcoming observations on mean densities and atmospheres of gas giants give a better indication of a potential heating mechanism, this could help to constrain the prior migration of such planets.
The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a 2D steady state atmospheric circulation model, the validity of which is assessed by comparison to 3D calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occuring in the Earths atmosphere or oceans. At depth, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD209458b, but also the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non uniform atmospheric heating thus provides a robust mechanism explaining the inflated radii of irradiated hot Jupiters.
We present the results of a deep, wide-field search for transiting `Hot Jupiter (HJ) planets in the globular cluster omega Centauri. As a result of a 25-night observing run with the ANU 40-inch telescope at Siding Spring Observatory, a total of 109,726 stellar time series composed of 787 independent data points were produced with differential photometry in a 52x52 (0.75 deg^2) field centered on the cluster core, but extending well beyond. Taking into account the size of transit signals as a function of stellar radius, 45,406 stars have suitable photometric accuracy (<=0.045 mag to V=19.5) to search for transits. Of this sample, 31,000 stars are expected to be main sequence cluster members. All stars, both cluster and foreground, were subjected to a rigorous search for transit signatures; none were found. Extensive Monte Carlo simulations based on our actual data set allows us to determine the sensitivity of our survey to planets with radii ~1.5R_Jup, and thus place statistical upper limits on their occurrence frequency F. Smaller planets are undetectable in our data. At 95% confidence, the frequency of Very Hot Jupiters (VHJs) with periods P satisfying 1d<P<3d can be no more than F_VHJ < 1/1040 in omega Cen. For HJ and VHJ distributed uniformly over the orbital period range 1d<P<5d, F_VHJ+HJ < 1/600. Our limits on large, short-period planets are comparable to those recently reported for other Galactic fields, despite being derived with less telescope time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا