No Arabic abstract
To probe the role of the intrinsic structure of the projectile on sub-barrier fusion, measurement of fusion cross sections has been carried out in $^{9}$Be + $^{197}$Au system in the energy range E$_{c.m.}$/V$_B$ $approx$ 0.82 to 1.16 using off-beam gamma counting method. Measured fusion excitation function has been analyzed in the framework of the coupled-channel approach using CCFULL code. It is observed that the coupled-channel calculations, including couplings to the inelastic state of the target and the first two states of the rotational band built on the ground state of the projectile, provide a very good description of the sub-barrier fusion data. At above barrier energies, the fusion cross section is found to be suppressed by $approx$ 39(2)% as compared to the coupled-channel prediction. A comparison of reduced excitation function of $^{9}$Be + $^{197}$Au with other $x$ + $^{197}$Au shows a larger enhancement for $^9$Be in the sub-barrier region amongst Z=2-5 weakly and tightly bound projectiles, which indicates the prominent role of the projectile deformation in addition to the weak binding.
The cross sections of complete fusion and incomplete fusion for the $ ^{9} $Be + $ ^{197} $Au system, at energies not too much above the Coulomb barrier, were measured for the first time. The online activation followed by offline $gamma$-ray spectroscopy method was used for the derivation of the cross sections. A slightly higher value of ICF/TF ratio has been observed, compared to other systems reported in the literature with $ ^{9} $Be beam. The experimental data were compared with coupled channel calculations without taking into account the coupling of the breakup channel, and experimental data of other reaction systems with weakly bound projectiles. A complete fusion suppression of about 40% was found for the $ ^{9} $Be + $ ^{197} $Au system, at energies above the barrier, whereas the total fusion cross sections are in agreement with the calculations.
In this work $textit{n}$-transfer and incomplete fusion cross sections for $^{9}$Be + $^{197}$Au system are reported over a wide energy range, E$_{c.m.}$ $approx$ 29-45 MeV. The experiment was carried out using activation technique and off-line gamma counting. The transfer process is found to be the dominant mode as compared to all other reaction channels. Detailed coupled reaction channel (CRC) calculations have been performed for $textit{n}$-transfer stripping and pickup cross sections. The measured 1$textit{n}$-stripping cross sections are explained with CRC calculations by including the ground state and the 2$^{+}$ resonance state (E = 3.03 MeV) of $^{8}$Be. The calculations for 1$textit{n}$-pickup, including only the ground state of $^{10}$Be agree reasonably well with the measured cross sections, while it overpredicts the data at subbarrier energies. For a better insight into the role of projectile structure in the transfer process, a comprehensive analysis of 1$textit{n}$-stripping reaction has been carried out for various weakly bound projectiles on $^{197}$Au target nucleus. The transfer cross sections scaled with the square of total radius of interacting nuclei show the expected Q-value dependence of 1$textit{n}$-stripping channel for weakly bound stable projectiles.
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross section for $^{6,7}$Li + $^{209}$Bi are analyzed in the framework of the DPP approach.
Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C + 198Pt system but not in 7Li + 198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C,16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.
Above-barrier fusion cross-sections for an isotopic chain of oxygen isotopes with A=16-19 incident on a $^{12}$C target are presented. Experimental data are compared with both static and dynamical microscopic calculations. These calculations are unable to explain the $sim$37% increase in the average above-barrier fusion cross-section observed for $^{19}$O as compared to $beta$-stable oxygen isotopes. This result suggests that for neutron-rich nuclei existing time-dependent Hartree-Fock calculations underpredict the role of dynamics at near-barrier energies. High-quality measurement of above-barrier fusion for an isotopic chain of increasingly neutron-rich nuclei provides an effective means to probe this fusion dynamics.