Do you want to publish a course? Click here

Host-virus evolutionary dynamics with specialist and generalist infection strategies: bifurcations, bistability and chaos

79   0   0.0 ( 0 )
 Added by Anel Nurtay
 Publication date 2019
  fields Biology
and research's language is English




Ask ChatGPT about the research

In this work we have investigated the evolutionary dynamics of a generalist pathogen, e.g. a virus population, that evolves towards specialisation in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram we identified stable fixed points and stable periodic orbits, as well as regions of bistability. For arbitrary biologically feasible initial population sizes, the probability of evolving towards stable solutions is obtained for each point of the analyzed parameter space. This probability map shows combinations of infection rates of the generalist and specialist strains that might lead to equal chances for each type becoming the dominant strategy. Furthermore, we have identified infection rates for which the model predicts the onset of chaotic dynamics. Several degenerate Bogdanov-Takens and zero-Hopf bifurcations are detected along with generalized Hopf and zero-Hopf bifurcations. This manuscript provides additional insights into the dynamical complexity of host-pathogen evolution towards different infection strategies.



rate research

Read More

While many epidemiological models have being proposed to understand and handle COVID-19, too little has been invested to understand how the virus replicates in the human body and potential antiviral can be used to control the replication cycle. In this work, using a control theoretical approach, validated mathematical models of SARS-CoV-2 in humans are properly characterized. A complete analysis of the main dynamic characteristic is developed based on the reproduction number. The equilibrium regions of the system are fully characterized, and the stability of such a regions, formally established. Mathematical analysis highlights critical conditions to decrease monotonically SARS-CoV-2 in the host, such conditions are relevant to tailor future antiviral treatments. Simulation results show the potential benefits of the aforementioned system characterization.
Dengue viral infections show unique infection patterns arising from its four serot- ypes, (DENV-1,2,3,4). Its effects range from simple fever in primary infections to potentially fatal secondary infections. We analytically and numerically analyse virus dynamics and humoral response in a host during primary and secondary dengue infection for long periods using micro-epidemic models. The models presented here incorporate time delays, antibody dependent enhancement (ADE), a dynamic switch and a correlation factor between different DENV serotypes. We find that the viral load goes down to undetectable levels within 7-14 days as is observed for dengue infection, in both cases. For primary infection, the stability analysis of steady states shows interesting dependence on the time delay involved in the production of antibodies from plasma cells. We demonstrate the existence of a critical value for the immune response parameter, beyond which the infection gets completely cured. For secondary infections with a different serotype, the homologous antibody production is enhanced due to the influence of heterologous antibodies. The antibody production is also controlled by the correlation factor, which is a measure of similarities between the different DENV serotypes involved. Our results agree with clinically observed humoral responses for primary and secondary infections.
Under the hypothesis that both influenza and respiratory syncytial virus (RSV) are the two leading causes of acute respiratory infections (ARI), in this paper we have used a standard two-pathogen epidemic model as a regressor to explain, on a yearly basis, high season ARI data in terms of the contact rates and initial conditions of the mathematical model. The rationale is that ARI high season is a transient regime of a noisy system, e.g., the system is driven away from equilibrium every year by fluctuations in variables such as humidity, temperature, viral mutations and human behavior. Using the value of the replacement number as a phenotypic trait associated to fitness, we provide evidence that influenza and RSV coexists throughout the ARI high season through superinfection.
We study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation where we assume a parameter $epsilon$ uncouples the system at $epsilon=0$. Using a normal form for $N=2$ identical systems undergoing Hopf bifurcation, we explore the dynamical properties. Matching the normal form coefficients to a coupled Wilson-Cowan oscillator network gives an understanding of different types of behaviour that arise in a model of perceptual bistability. Notably, we find bistability between in-phase and anti-phase solutions that demonstrates the feasibility for synchronisation to act as the mechanism by which periodic inputs can be segregated (rather than via strong inhibitory coupling, as in existing models). Using numerical continuation we confirm our theoretical analysis for small coupling strength and explore the bifurcation diagrams for large coupling strength, where the normal form approximation breaks down.
Cell-fate transition can be modeled by ordinary differential equations (ODEs) which describe the behavior of several molecules in interaction, and for which each stable equilibrium corresponds to a possible phenotype (or biological trait). In this paper, we focus on simple ODE systems modeling two molecules which each negatively (or positively) regulate the other. It is well-known that such models may lead to monostability or multistability, depending on the selected parameters. However, extensive numerical simulations have led systems biologists to conjecture that in the vast majority of cases, there cannot be more than two stable points. Our main result is a proof of this conjecture. More specifically, we provide a criterion ensuring at most bistability, which is indeed satisfied by most commonly used functions. This includes Hill functions, but also a wide family of convex and sigmoid functions. We also determine which parameters lead to monostability, and which lead to bistability, by developing a more general framework encompassing all our results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا