Do you want to publish a course? Click here

DupNet: Towards Very Tiny Quantized CNN with Improved Accuracy for Face Detection

350   0   0.0 ( 0 )
 Added by Junjie Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deploying deep learning based face detectors on edge devices is a challenging task due to the limited computation resources. Even though binarizing the weights of a very tiny network gives impressive compactness on model size (e.g. 240.9 KB for IFQ-Tinier-YOLO), it is not tiny enough to fit in the embedded devices with strict memory constraints. In this paper, we propose DupNet which consists of two parts. Firstly, we employ weights with duplicated channels for the weight-intensive layers to reduce the model size. Secondly, for the quantization-sensitive layers whose quantization causes notable accuracy drop, we duplicate its input feature maps. It allows us to use more weights channels for convolving more representative outputs. Based on that, we propose a very tiny face detector, DupNet-Tinier-YOLO, which is 6.5X times smaller on model size and 42.0% less complex on computation and meanwhile achieves 2.4% higher detection than IFQ-Tinier-YOLO. Comparing with the full precision Tiny-YOLO, our DupNet-Tinier-YOLO gives 1,694.2X and 389.9X times savings on model size and computation complexity respectively with only 4.0% drop on detection rate (0.880 vs. 0.920). Moreover, our DupNet-Tinier-YOLO is only 36.9 KB, which is the tiniest deep face detector to our best knowledge.



rate research

Read More

Faster RCNN has achieved great success for generic object detection including PASCAL object detection and MS COCO object detection. In this report, we propose a detailed designed Faster RCNN method named FDNet1.0 for face detection. Several techniques were employed including multi-scale training, multi-scale testing, light-designed RCNN, some tricks for inference and a vote-based ensemble method. Our method achieves two 1th places and one 2nd place in three tasks over WIDER FACE validation dataset (easy set, medium set, hard set).
Compared with model architectures, the training process, which is also crucial to the success of detectors, has received relatively less attention in object detection. In this work, we carefully revisit the standard training practice of detectors, and find that the detection performance is often limited by the imbalance during the training process, which generally consists in three levels - sample level, feature level, and objective level. To mitigate the adverse effects caused thereby, we propose Libra R-CNN, a simple but effective framework towards balanced learning for object detection. It integrates three novel components: IoU-balanced sampling, balanced feature pyramid, and balanced L1 loss, respectively for reducing the imbalance at sample, feature, and objective level. Benefitted from the overall balanced design, Libra R-CNN significantly improves the detection performance. Without bells and whistles, it achieves 2.5 points and 2.0 points higher Average Precision (AP) than FPN Faster R-CNN and RetinaNet respectively on MSCOCO.
Recently, the convolutional neural network has brought impressive improvements for object detection. However, detecting tiny objects in large-scale remote sensing images still remains challenging. First, the extreme large input size makes the existing object detection solutions too slow for practical use. Second, the massive and complex backgrounds cause serious false alarms. Moreover, the ultratiny objects increase the difficulty of accurate detection. To tackle these problems, we propose a unified and self-reinforced network called remote sensing region-based convolutional neural network ($mathcal{R}^2$-CNN), composing of backbone Tiny-Net, intermediate global attention block, and final classifier and detector. Tiny-Net is a lightweight residual structure, which enables fast and powerful features extraction from inputs. Global attention block is built upon Tiny-Net to inhibit false positives. Classifier is then used to predict the existence of targets in each patch, and detector is followed to locate them accurately if available. The classifier and detector are mutually reinforced with end-to-end training, which further speed up the process and avoid false alarms. Effectiveness of $mathcal{R}^2$-CNN is validated on hundreds of GF-1 images and GF-2 images that are 18 000 $times$ 18 192 pixels, 2.0-m resolution, and 27 620 $times$ 29 200 pixels, 0.8-m resolution, respectively. Specifically, we can process a GF-1 image in 29.4 s on Titian X just with single thread. According to our knowledge, no previous solution can detect the tiny object on such huge remote sensing images gracefully. We believe that it is a significant step toward practical real-time remote sensing systems.
An increasing number of applications in the computer vision domain, specially, in medical imaging and remote sensing, are challenging when the goal is to classify very large images with tiny objects. More specifically, these type of classification tasks face two key challenges: $i$) the size of the input image in the target dataset is usually in the order of megapixels, however, existing deep architectures do not easily operate on such big images due to memory constraints, consequently, we seek a memory-efficient method to process these images; and $ii$) only a small fraction of the input images are informative of the label of interest, resulting in low region of interest (ROI) to image ratio. However, most of the current convolutional neural networks (CNNs) are designed for image classification datasets that have relatively large ROIs and small image size (sub-megapixel). Existing approaches have addressed these two challenges in isolation. We present an end-to-end CNN model termed Zoom-In network that leverages hierarchical attention sampling for classification of large images with tiny objects using a single GPU. We evaluate our method on two large-image datasets and one gigapixel dataset. Experimental results show that our model achieves higher accuracy than existing methods while requiring less computing resources.
106 - Baoyun Peng , Min Liu , Heng Yang 2021
Face recognition has made significant progress in recent years due to deep convolutional neural networks (CNN). In many face recognition (FR) scenarios, face images are acquired from a sequence with huge intra-variations. These intra-variations, which are mainly affected by the low-quality face images, cause instability of recognition performance. Previous works have focused on ad-hoc methods to select frames from a video or use face image quality assessment (FIQA) methods, which consider only a particular or combination of several distortions. In this work, we present an efficient non-reference image quality assessment for FR that directly links image quality assessment (IQA) and FR. More specifically, we propose a new measurement to evaluate image quality without any reference. Based on the proposed quality measurement, we propose a deep Tiny Face Quality network (tinyFQnet) to learn a quality prediction function from data. We evaluate the proposed method for different powerful FR models on two classical video-based (or template-based) benchmark: IJB-B and YTF. Extensive experiments show that, although the tinyFQnet is much smaller than the others, the proposed method outperforms state-of-the-art quality assessment methods in terms of effectiveness and efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا