Do you want to publish a course? Click here

Fine-Grained Tensor Network Methods

94   0   0.0 ( 0 )
 Added by Philipp Schmoll
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a strategy for tensor network algorithms that allows to deal very efficiently with lattices of high connectivity. The basic idea is to fine-grain the physical degrees of freedom, i.e., decompose them into more fundamental units which, after a suitable coarse-graining, provide the original ones. Thanks to this procedure, the original lattice with high connectivity is transformed by an isometry into a simpler structure, which is easier to simulate via usual tensor network methods. In particular this enables the use of standard schemes to contract infinite 2d tensor networks - such as Corner Transfer Matrix Renormalization schemes - which are more involved on complex lattice structures. We prove the validity of our approach by numerically computing the ground-state properties of the ferromagnetic spin-1 transverse-field Ising model on the 2d triangular and 3d stacked triangular lattice, as well as of the hard-core and soft-core Bose-Hubbard models on the triangular lattice. Our results are benchmarked against those obtained with other techniques, such as perturbative continuous unitary transformations and graph projected entangled pair states, showing excellent agreement and also improved performance in several regimes.



rate research

Read More

238 - S. Iblisdir 2013
Markov chains for probability distributions related to matrix product states and 1D Hamiltonians are introduced. With appropriate inverse temperature schedules, these chains can be combined into a random approximation scheme for ground states of such Hamiltonians. Numerical experiments suggest that a linear, i.e. fast, schedule is possible in non-trivial cases. A natural extension of these chains to 2D settings is next presented and tested. The obtained results compare well with Euclidean evolution. The proposed Markov chains are easy to implement and are inherently sign problem free (even for fermionic degrees of freedom).
Condensed matter systems provide alternative `vacua exhibiting emergent low-energy properties drastically different from those of the standard model. A case in point is the emergent quantum electrodynamics (QED) in the fractionalized topological magnet known as quantum spin ice, whose magnetic monopoles set it apart from the familiar QED of the world we live in. Here, we show that the two greatly differ in their fine-structure constant $alpha$, which parametrizes how strongly matter couples to light: $alpha_{mathrm{QSI}}$ is more than an order of magnitude greater than $alpha_{mathrm{QED}} approx 1/137$. Furthermore, $alpha_{mathrm{QSI}}$, the emergent speed of light, and all other parameters of the emergent QED, are tunable by engineering the microscopic Hamiltonian. We find that $alpha_{mathrm{QSI}}$ can be tuned all the way from zero up to what is believed to be the textit{strongest possible} coupling beyond which QED confines. In view of the small size of its constrained Hilbert space, this marks out quantum spin ice as an ideal platform for studying exotic quantum field theories and a target for quantum simulation. The large $alpha_{mathrm{QSI}}$ implies that experiments probing candidate condensed-matter realizations of quantum spin ice should expect to observe phenomena arising due to strong interactions.
Using exact diagonalization and tensor network techniques we compute the gap for the AKLT Hamiltonian in 1D and 2D spatial dimensions. Tensor Network methods are used to extract physical properties directly in the thermodynamic limit, and we support these results using finite-size scalings from exact diagonalization. Studying the AKLT Hamiltonian perturbed by an external field, we show how to obtain an accurate value of the gap of the original AKLT Hamiltonian from the field value at which the ground state verifies e_0<0, which is a quantum critical point. With the Tensor Network Renormalization Group methods we provide evidence of a finite gap in the thermodynamic limit for the AKLT models in the 1D chain and 2D hexagonal and square lattices. This method can be applied generally to Hamiltonians with rotational symmetry, and we also show results beyond the AKLT model.
Recently, the tensor network states (TNS) methods have proven to be very powerful tools to investigate the strongly correlated many-particle physics in one and two dimensions. The implementation of TNS methods depends heavily on the operations of tensors, including contraction, permutation, reshaping tensors, SVD and son on. Unfortunately, the most popular computer languages for scientific computation, such as Fortran and C/C++ do not have a standard library for such operations, and therefore make the coding of TNS very tedious. We develop a Fortran2003 package that includes all kinds of basic tensor operations designed for TNS. It is user-friendly and flexible for different forms of TNS, and therefore greatly simplifies the coding work for the TNS methods.
The distribution of Yang-Lee zeros in the ferromagnetic Ising model in both two and three dimensions is studied on the complex field plane directly in the thermodynamic limit via the tensor network methods. The partition function is represented as a contraction of a tensor network and is efficiently evaluated with an iterative tensor renormalization scheme. The free-energy density and the magnetization are computed on the complex field plane. Via the discontinuity of the magnetization, the density of the Yang-Lee zeros is obtained to lie on the unit circle, consistent with the Lee-Yang circle theorem. Distinct features are observed at different temperatures---below, above and at the critical temperature. Application of the tensor-network approach is also made to the $q$-state Potts models in both two and three dimensions and a previous debate on whether, in the thermodynamic limit, the Yang-Lee zeros lie on a unit circle for $q>2$ is resolved: they clearly do not lie on a unit circle except at the zero temperature. For the Potts models (q=3,4,5,6) investigated in two dimensions, as the temperature is lowered the radius of the zeros at a fixed angle from the real axis shrinks exponentially towards unity with the inverse temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا