Do you want to publish a course? Click here

TNSPackage: A Fortran2003 library designed for tensor network state methods

84   0   0.0 ( 0 )
 Added by Lixin He
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, the tensor network states (TNS) methods have proven to be very powerful tools to investigate the strongly correlated many-particle physics in one and two dimensions. The implementation of TNS methods depends heavily on the operations of tensors, including contraction, permutation, reshaping tensors, SVD and son on. Unfortunately, the most popular computer languages for scientific computation, such as Fortran and C/C++ do not have a standard library for such operations, and therefore make the coding of TNS very tedious. We develop a Fortran2003 package that includes all kinds of basic tensor operations designed for TNS. It is user-friendly and flexible for different forms of TNS, and therefore greatly simplifies the coding work for the TNS methods.



rate research

Read More

We develop a strategy for tensor network algorithms that allows to deal very efficiently with lattices of high connectivity. The basic idea is to fine-grain the physical degrees of freedom, i.e., decompose them into more fundamental units which, after a suitable coarse-graining, provide the original ones. Thanks to this procedure, the original lattice with high connectivity is transformed by an isometry into a simpler structure, which is easier to simulate via usual tensor network methods. In particular this enables the use of standard schemes to contract infinite 2d tensor networks - such as Corner Transfer Matrix Renormalization schemes - which are more involved on complex lattice structures. We prove the validity of our approach by numerically computing the ground-state properties of the ferromagnetic spin-1 transverse-field Ising model on the 2d triangular and 3d stacked triangular lattice, as well as of the hard-core and soft-core Bose-Hubbard models on the triangular lattice. Our results are benchmarked against those obtained with other techniques, such as perturbative continuous unitary transformations and graph projected entangled pair states, showing excellent agreement and also improved performance in several regimes.
Using exact diagonalization and tensor network techniques we compute the gap for the AKLT Hamiltonian in 1D and 2D spatial dimensions. Tensor Network methods are used to extract physical properties directly in the thermodynamic limit, and we support these results using finite-size scalings from exact diagonalization. Studying the AKLT Hamiltonian perturbed by an external field, we show how to obtain an accurate value of the gap of the original AKLT Hamiltonian from the field value at which the ground state verifies e_0<0, which is a quantum critical point. With the Tensor Network Renormalization Group methods we provide evidence of a finite gap in the thermodynamic limit for the AKLT models in the 1D chain and 2D hexagonal and square lattices. This method can be applied generally to Hamiltonians with rotational symmetry, and we also show results beyond the AKLT model.
In 1+1-dimensional conformal field theory, the thermal state on a circle is related to a certain quotient of the vacuum on a line. We explain how to take this quotient in the MERA tensor network representation of the vacuum and confirm the validity of the construction in the critical Ising model. This result suggests that the tensors comprising MERA can be interpreted as performing local scale transformations, so that adding or removing them emulates conformal maps. In this sense, the optimized MERA recovers local conformal invariance, which is explicitly broken by the choice of lattice. Our discussion also informs the dialogue between tensor networks and holographic duality.
124 - Glen Evenbly 2015
We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. Firstly, we recall established techniques for how the partition function of a 2D classical many-body system or the Euclidean path integral of a 1D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2D classical statistical and 1D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.
We present a general graph-based Projected Entangled-Pair State (gPEPS) algorithm to approximate ground states of nearest-neighbor local Hamiltonians on any lattice or graph of infinite size. By introducing the structural-matrix which codifies the details of tensor networks on any graphs in any dimension $d$, we are able to produce a code that can be essentially launched to simulate any lattice. We further introduce an optimized algorithm to compute simple tensor updates as well as expectation values and correlators with a mean-field-like effective environments. Though not being variational, this strategy allows to cope with PEPS of very large bond dimension (e.g., $D=100$), and produces remarkably accurate results in the thermodynamic limit in many situations, and specially when the correlation length is small and the connectivity of the lattice is large. We prove the validity of our approach by benchmarking the algorithm against known results for several models, i.e., the antiferromagnetic Heisenberg model on a chain, star and cubic lattices, the hardcore Bose-Hubbard model on square lattice, the ferromagnetic Heisenberg model in a field on the pyrochlore lattice, as well as the $3$-state quantum Potts model in field on the kagome lattice and the spin-$1$ bilinear-biquadratic Heisenberg model on the triangular lattice. We further demonstrate the performance of gPEPS by studying the quantum phase transition of the $2d$ quantum Ising model in transverse magnetic field on the square lattice, and the phase diagram of the Kitaev-Heisenberg model on the hyperhoneycomb lattice. Our results are in excellent agreement with previous studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا