Do you want to publish a course? Click here

Self-adjoint and Markovian extensions of infinite quantum graphs

140   0   0.0 ( 0 )
 Added by Aleksey Kostenko S.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate self-adjoint extensions of the minimal Kirchhoff Laplacian on an infinite metric graph. More specifically, the main focus is on the relationship between graph ends and the space of self-adjoint extensions of the corresponding minimal Kirchhoff Laplacian $mathbf{H}_0$. First, we introduce the notion of finite and infinite volume for (topological) ends of a metric graph and then establish a lower bound on the deficiency indices of $mathbf{H}_0$ in terms of the number of finite volume graph ends. This estimate is sharp and we also find a necessary and sufficient condition for the equality between the number of finite volume graph ends and the deficiency indices of $mathbf{H}_0$ to hold. Moreover, it turns out that finite volume graph ends play a crucial role in the study of Markovian extensions of $mathbf{H}_0$. In particular, we show that the minimal Kirchhoff Laplacian admits a unique Markovian extension exactly when every topological end of the underlying metric graph has infinite volume. In the case of finitely many finite volume ends (for instance, the latter includes Cayley graphs of a large class of finitely generated infinite groups) we are even able to provide a complete description of all Markovian extensions of $mathbf{H}_0$.



rate research

Read More

We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators on metric graphs having infinitely many edges and vertices. We introduce a new definition of the isoperimetric constant for quantum graphs and then prove the Cheeger-type estimate. Our definition of the isoperimetric constant is purely combinatorial and thus it establishes connections with the combinatorial isoperimetric constant, one of the central objects in spectral graph theory and in the theory of simple random walks on graphs. The latter enables us to prove a number of criteria for quantum graphs to be uniformly positive or to have purely discrete spectrum. We demonstrate our findings by considering trees, antitrees and Cayley graphs of finitely generated groups.
Let $Omega_-$ and $Omega_+$ be two bounded smooth domains in $mathbb{R}^n$, $nge 2$, separated by a hypersurface $Sigma$. For $mu>0$, consider the function $h_mu=1_{Omega_-}-mu 1_{Omega_+}$. We discuss self-adjoint realizations of the operator $L_{mu}=- ablacdot h_mu abla$ in $L^2(Omega_-cupOmega_+)$ with the Dirichlet condition at the exterior boundary. We show that $L_mu$ is always essentially self-adjoint on the natural domain (corresponding to transmission-type boundary conditions at the interface $Sigma$) and study some properties of its unique self-adjoint extension $mathcal{L}_mu:=overline{L_mu}$. If $mu e 1$, then $mathcal{L}_mu$ simply coincides with $L_mu$ and has compact resolvent. If $n=2$, then $mathcal{L}_1$ has a non-empty essential spectrum, $sigma_mathrm{ess}(mathcal{L}_{1})={0}$. If $nge 3$, the spectral properties of $mathcal{L}_1$ depend on the geometry of $Sigma$. In particular, it has compact resolvent if $Sigma$ is the union of disjoint strictly convex hypersurfaces, but can have a non-empty essential spectrum if a part of $Sigma$ is flat. Our construction features the method of boundary triplets, and the problem is reduced to finding the self-adjoint extensions of a pseudodifferential operator on $Sigma$. We discuss some links between the resulting self-adjoint operator $mathcal{L}_mu$ and some effects observed in negative-index materials.
We compute the deficiency spaces of operators of the form $H_A{hat{otimes}} I + I{hat{otimes}} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumanns theory. The structure of the deficiency spaces for this case was asserted already by Ibort, Marmo and Perez-Pardo, but only proven under the restriction of $H_B$ having discrete, non-degenerate spectrum.
We consider the self-adjoint extensions (SAE) of the symmetric supercharges and Hamiltonian for a model of SUSY Quantum Mechanics in $mathbb{R}^+$ with a singular superpotential. We show that only for two particular SAE, whose domains are scale invariant, the algebra of N=2 SUSY is realized, one with manifest SUSY and the other with spontaneously broken SUSY. Otherwise, only the N=1 SUSY algebra is obtained, with spontaneously broken SUSY and non degenerate energy spectrum.
This note aims to give prominence to some new results on the absence and localization of eigenvalues for the Dirac and Klein-Gordon operators, starting from known resolvent estimates already established in the literature combined with the renowned Birman-Schwinger principle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا