Do you want to publish a course? Click here

Measurement-Induced Boolean Dynamics for Open Quantum Networks

83   0   0.0 ( 0 )
 Added by Hongsheng Qi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we study the recursion of measurement outcomes for open quantum networks under sequential measurements. Open quantum networks are networked quantum subsystems (e.g., qubits) with the state evolutions described by a continuous Lindblad master equation. When measurements are performed sequentially along such continuous dynamics, the quantum network states undergo random jumps and the corresponding measurement outcomes can be described by a vector of probabilistic Boolean variables. The induced recursion of the Boolean vectors forms a probabilistic Boolean network. First of all, we show that the state transition of the induced Boolean networks can be explicitly represented through realification of the master equation. Next, when the open quantum dynamics is relaxing in the sense that it possesses a unique equilibrium as a global attractor, structural properties including absorbing states, reducibility, and periodicity for the induced Boolean network are direct consequences of the relaxing property. Particularly, we show that generically, relaxing quantum dynamics leads to irreducible and aperiodic chains for the measurement outcomes. Finally, we show that for quantum consensus networks as a type of non-relaxing open quantum network dynamics, the communication classes of the measurement-induced Boolean networks are encoded in the quantum Laplacian of the underlying interaction graph.



rate research

Read More

In this paper, we study dynamical quantum networks which evolve according to Schrodinger equations but subject to sequential local or global quantum measurements. A network of qubits forms a composite quantum system whose state undergoes unitary evolution in between periodic measurements, leading to hybrid quantum dynamics with random jumps at discrete time instances along a continuous orbit. The measurements either act on the entire network of qubits, or only a subset of qubits. First of all, we reveal that this type of hybrid quantum dynamics induces probabilistic Boolean recursions representing the measurement outcomes. With global measurements, it is shown that such resulting Boolean recursions define Markov chains whose state-transitions are fully determined by the network Hamiltonian and the measurement observables. Particularly, we establish an explicit and algebraic representation of the underlying recursive random mapping driving such induced Markov chains. Next, with local measurements, the resulting probabilistic Boolean dynamics is shown to be no longer Markovian. The state transition probability at any given time becomes dependent on the entire history of the sample path, for which we establish a recursive way of computing such non-Markovian probability transitions. Finally, we adopt the classical bilinear control model for the continuous Schrodinger evolution, and show how the measurements affect the controllability of the quantum networks.
We investigate dynamical properties of a quantum generalization of classical reversible Boolean networks. The state of each node is encoded as a single qubit, and classical Boolean logic operations are supplemented by controlled bit-flip and Hadamard operations. We consider synchronous updating schemes in which each qubit is updated at each step based on stored values of the qubits from the previous step. We investigate the periodic or quasiperiodic behavior of quantum networks, and we analyze the propagation of single site perturbations through the quantum networks with input degree one. A non-classical mechanism for perturbation propagation leads to substantially different evolution of the Hamming distance between the original and perturbed states.
Novel concepts, perspectives and challenges in measuring and controlling an open quantum system via sequential schemes are shown. We discuss how similar protocols, relying both on repeated quantum measurements and dynamical decoupling control pulses, can allow to: (i) Confine and protect quantum dynamics from decoherence in accordance with the Zeno physics. (ii) Analytically predict the probability that a quantum system is transferred into a target quantum state by means of stochastic sequential measurements. (iii) Optimally reconstruct the spectral density of environmental noise sources by orthogonalizing in the frequency domain the filter functions driving the designed quantum-sensor. The achievement of these tasks will enhance our capability to observe and manipulate open quantum systems, thus bringing advances to quantum science and technologies.
This paper is concerned with a class of open quantum systems whose dynamic variables have an algebraic structure, similar to that of the Pauli matrices pertaining to finite-level systems. The system interacts with external bosonic fields, and its Hamiltonian and coupling operators depend linearly on the system variables. This results in a Hudson-Parthasarathy quantum stochastic differential equation (QSDE) whose drift and dispersion terms are affine and linear functions of the system variables. The quasilinearity of the QSDE leads to tractable dynamics of mean values and higher-order multi-point moments of the system variables driven by vacuum input fields. This allows for the closed-form computation of the quasi-characteristic function of the invariant quantum state of the system and infinite-horizon asymptotic growth rates for a class of cost functionals. The tractability of the moment dynamics is also used for mean square optimal Luenberger observer design in a measurement-based filtering problem for a quasilinear quantum plant, which leads to a Kalman-like quantum filter.
This paper considers one-mode open quantum harmonic oscillators with a pair of conjugate position and momentum variables driven by vacuum bosonic fields according to a linear quantum stochastic differential equation. Such systems model cavity resonators in quantum optical experiments. Assuming that the quadratic Hamiltonian of the oscillator is specified by a positive definite energy matrix, we consider a modified version of the quantum Karhunen-Loeve expansion of the system variables proposed recently. The expansion employs eigenvalues and eigenfunctions of the two-point commutator kernel for linearly transformed system variables. We take advantage of the specific structure of this eigenbasis in the one-mode case (including its connection with the classical Ornstein-Uhlenbeck process). These results are applied to computing quadratic-exponential cost functionals which provide robust performance criteria for risk-sensitive control of open quantum systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا