No Arabic abstract
Inappropriate and profane content on social media is exponentially increasing and big corporations are becoming more aware of the type of content on which they are advertising and how it may affect their brand reputation. But with a huge surge in content being posted online it becomes seemingly difficult to filter out related videos on which they can run their ads without compromising brand name. Advertising on youtube videos generates a huge amount of revenue for corporations. It becomes increasingly important for such corporations to advertise on only the videos that dont hurt the feelings, community or harmony of the audience at large. In this paper, we propose a system to identify inappropriate content on YouTube and leverage it to perform a first of its kind, large scale, quantitative characterization that reveals some of the risks of YouTube ads consumption on inappropriate videos. Customization of the architecture have also been included to serve different requirements of corporations. Our analysis reveals that YouTube is still plagued by such disturbing videos and its currently deployed countermeasures are ineffective in terms of detecting them in a timely manner. Our framework tries to fill this gap by providing a handy, add on solution to filter the videos and help corporations and companies to push ads on the platform without worrying about the content on which the ads are displayed.
User beliefs about algorithmic systems are constantly co-produced through user interaction and the complex socio-technical systems that generate recommendations. Identifying these beliefs is crucial because they influence how users interact with recommendation algorithms. With no prior work on user beliefs of algorithmic video recommendations, practitioners lack relevant knowledge to improve the user experience of such systems. To address this problem, we conducted semi-structured interviews with middle-aged YouTube video consumers to analyze their user beliefs about the video recommendation system. Our analysis revealed different factors that users believe influence their recommendations. Based on these factors, we identified four groups of user beliefs: Previous Actions, Social Media, Recommender System, and Company Policy. Additionally, we propose a framework to distinguish the four main actors that users believe influence their video recommendations: the current user, other users, the algorithm, and the organization. This framework provides a new lens to explore design suggestions based on the agency of these four actors. It also exposes a novel aspect previously unexplored: the effect of corporate decisions on the interaction with algorithmic recommendations. While we found that users are aware of the existence of the recommendation system on YouTube, we show that their understanding of this system is limited.
In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard collaborative filtering (CF) using Pearson correlation. Furthermore, we introduce a free parameter $beta$ to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-$N$ similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.
While implicit feedback (e.g., clicks, dwell times, etc.) is an abundant and attractive source of data for learning to rank, it can produce unfair ranking policies for both exogenous and endogenous reasons. Exogenous reasons typically manifest themselves as biases in the training data, which then get reflected in the learned ranking policy and often lead to rich-get-richer dynamics. Moreover, even after the correction of such biases, reasons endogenous to the design of the learning algorithm can still lead to ranking policies that do not allocate exposure among items in a fair way. To address both exogenous and endogenous sources of unfairness, we present the first learning-to-rank approach that addresses both presentation bias and merit-based fairness of exposure simultaneously. Specifically, we define a class of amortized fairness-of-exposure constraints that can be chosen based on the needs of an application, and we show how these fairness criteria can be enforced despite the selection biases in implicit feedback data. The key result is an efficient and flexible policy-gradient algorithm, called FULTR, which is the first to enable the use of counterfactual estimators for both utility estimation and fairness constraints. Beyond the theoretical justification of the framework, we show empirically that the proposed algorithm can learn accurate and fair ranking policies from biased and noisy feedback.
Imagine a food recommender system -- how would we check if it is emph{causing} and fostering unhealthy eating habits or merely reflecting users interests? How much of a users experience over time with a recommender is caused by the recommender systems choices and biases, and how much is based on the users preferences and biases? Popularity bias and filter bubbles are two of the most well-studied recommender system biases, but most of the prior research has focused on understanding the system behavior in a single recommendation step. How do these biases interplay with user behavior, and what types of user experiences are created from repeated interactions? In this work, we offer a simulation framework for measuring the impact of a recommender system under different types of user behavior. Using this simulation framework, we can (a) isolate the effect of the recommender system from the user preferences, and (b) examine how the system performs not just on average for an average user but also the extreme experiences under atypical user behavior. As part of the simulation framework, we propose a set of evaluation metrics over the simulations to understand the recommender systems behavior. Finally, we present two empirical case studies -- one on traditional collaborative filtering in MovieLens and one on a large-scale production recommender system -- to understand how popularity bias manifests over time.
With YouTubes growing importance as a news platform, its recommendation system came under increased scrutiny. Recognizing YouTubes recommendation system as a broadcaster of media, we explore the applicability of laws that require broadcasters to give important political, ideological, and social groups adequate opportunity to express themselves in the broadcasted program of the service. We present audits as an important tool to enforce such laws and to ensure that a system operates in the publics interest. To examine whether YouTube is enacting certain biases, we collected video recommendations about political topics by following chains of ten recommendations per video. Our findings suggest that YouTubes recommendation system is enacting important biases. We find that YouTube is recommending increasingly popular but topically unrelated videos. The sadness evoked by the recommended videos decreases while the happiness increases. We discuss the strong popularity bias we identified and analyze the link between the popularity of content and emotions. We also discuss how audits empower researchers and civic hackers to monitor complex machine learning (ML)-based systems like YouTubes recommendation system.