Do you want to publish a course? Click here

Giant anisotropy of Gilbert damping in a Rashba honeycomb antiferromagnet

93   0   0.0 ( 0 )
 Added by Mikhail Titov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Giant Gilbert damping anisotropy is identified as a signature of strong Rashba spin-orbit coupling in a two-dimensional antiferromagnet on a honeycomb lattice. The phenomenon originates in spin-orbit induced splitting of conduction electron subbands that strongly suppresses certain spin-flip processes. As a result, the spin-orbit interaction is shown to support an undamped non-equilibrium dynamical mode that corresponds to an ultrafast in-plane Neel vector precession and a constant perpendicular-to-the-plane magnetization. The phenomenon is illustrated on the basis of a two dimensional $s$-$d$ like model. Spin-orbit torques and conductivity are also computed microscopically for this model. Unlike Gilbert damping these quantities are shown to reveal only a weak anisotropy that is limited to the semiconductor regime corresponding to the Fermi energy staying in a close vicinity of antiferromagnetic gap.



rate research

Read More

Recent experiments on switching antiferromagnetic domains by electric current pulses have attracted a lot of attention to spin-orbit torques in antiferromagnets. In this work, we employ the tight-binding model solver, kwant, to compute spin-orbit torques in a two-dimensional antiferromagnet on a honeycomb lattice with strong spin-orbit interaction of Rashba type. Our model combines spin-orbit interaction, local s-d-like exchange, and scattering of conduction electrons on on-site disorder potential to provide a microscopic mechanism for angular momentum relaxation. We consider t
Tailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co$_{50}$Fe$_{50}$ thin film with a maximum-minimum damping ratio of 400 %, determined by broadband spin-torque as well as inductive ferromagnetic resonance. We conclude that the origin of this damping anisotropy is the variation of the spin orbit coupling for different magnetization orientations in the cubic lattice, which is further corroborate from the magnitude of the anisotropic magnetoresistance in Co$_{50}$Fe$_{50}$.
We propose that non-collinear magnetic order in quantum magnets can harbor a novel higher-order topological magnon phase with non-Hermitian topology and hinge magnon modes. We consider a three-dimensional system of interacting local moments on stacked-layers of honeycomb lattice. It initially favors a collinear magnetic order along an in-plane direction, which turns into a non-collinear order upon applying an external magnetic field perpendicular to the easy axis. We exploit the non-Hermitian nature of the magnon Hamiltonian to show that this field-induced transition corresponds to the transformation from a topological magnon insulator to a higher-order topological magnon state with a one-dimensional hinge mode. As a concrete example, we discuss the recently-discovered monoclinic phase of the thin chromium trihalides, which we propose as the first promising material candidate of the higher-order topological magnon phase.
The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an organic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an on demand control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on switchable molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular habitat offered by an antiphase boundary of the Rashba system BiAg$_2$ stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.
Using broadband ferromagnetic resonance, we measure the damping parameter of [Co(5 r{A})/Pt(3 r{A})]${times 6}$ multilayers whose growth was optimized to maximize the perpendicular anisotropy. Structural characterizations indicate abrupt interfaces essentially free of intermixing despite the miscible character of Co and Pt. Gilbert damping parameters as low as 0.021 can be obtained despite a magneto-crystalline anisotropy as large as $10^6~textrm{J/m}^3$. The inhomogeneous broadening accounts for part of the ferromagnetic resonance linewidth, indicating some structural disorder leading to a equivalent 20 mT of inhomogenity of the effective field. The unexpectedly relatively low damping factor indicates that the presence of the Pt heavy metal within the multilayer may not be detrimental to the damping provided that intermixing is avoided at the Co/Pt interfaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا