No Arabic abstract
Open-domain question answering can be formulated as a phrase retrieval problem, in which we can expect huge scalability and speed benefit but often suffer from low accuracy due to the limitation of existing phrase representation models. In this paper, we aim to improve the quality of each phrase embedding by augmenting it with a contextualized sparse representation (Sparc). Unlike previous sparse vectors that are term-frequency-based (e.g., tf-idf) or directly learned (only few thousand dimensions), we leverage rectified self-attention to indirectly learn sparse vectors in n-gram vocabulary space. By augmenting the previous phrase retrieval model (Seo et al., 2019) with Sparc, we show 4%+ improvement in CuratedTREC and SQuAD-Open. Our CuratedTREC score is even better than the best known retrieve & read model with at least 45x faster inference speed.
We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.
Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of the massive size of their passage index. In this paper, we introduce Binary Passage Retriever (BPR), a memory-efficient neural retrieval model that integrates a learning-to-hash technique into the state-of-the-art Dense Passage Retriever (DPR) to represent the passage index using compact binary codes rather than continuous vectors. BPR is trained with a multi-task objective over two tasks: efficient candidate generation based on binary codes and accurate reranking based on continuous vectors. Compared with DPR, BPR substantially reduces the memory cost from 65GB to 2GB without a loss of accuracy on two standard open-domain question answering benchmarks: Natural Questions and TriviaQA. Our code and trained models are available at https://github.com/studio-ousia/bpr.
Open-domain Question Answering (ODQA) has achieved significant results in terms of supervised learning manner. However, data annotation cannot also be irresistible for its huge demand in an open domain. Though unsupervised QA or unsupervised Machine Reading Comprehension (MRC) has been tried more or less, unsupervised ODQA has not been touched according to our best knowledge. This paper thus pioneers the work of unsupervised ODQA by formally introducing the task and proposing a series of key data construction methods. Our exploration in this work inspiringly shows unsupervised ODQA can reach up to 86% performance of supervised ones.
In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.
Open-domain question answering (QA) aims to find the answer to a question from a large collection of documents.Though many models for single-document machine comprehension have achieved strong performance, there is still much room for improving open-domain QA systems since document retrieval and answer reranking are still unsatisfactory. Golden documents that contain the correct answers may not be correctly scored by the retrieval component, and the correct answers that have been extracted may be wrongly ranked after other candidate answers by the reranking component. One of the reasons is derived from the independent principle in which each candidate document (or answer) is scored independently without considering its relationship to other documents (or answers). In this work, we propose a knowledge-aided open-domain QA (KAQA) method which targets at improving relevant document retrieval and candidate answer reranking by considering the relationship between a question and the documents (termed as question-document graph), and the relationship between candidate documents (termed as document-document graph). The graphs are built using knowledge triples from external knowledge resources. During document retrieval, a candidate document is scored by considering its relationship to the question and other documents. During answer reranking, a candidate answer is reranked using not only its own context but also the clues from other documents. The experimental results show that our proposed method improves document retrieval and answer reranking, and thereby enhances the overall performance of open-domain question answering.