Do you want to publish a course? Click here

What is a globular cluster? An observational perspective

54   0   0.0 ( 0 )
 Added by Raffaele Gratton
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Globular clusters are large and dense agglomerate of stars. At variance with smaller clusters of stars, they exhibit signs of some chemical evolution. At least for this reason, they are intermediate between open clusters and massive objects such as nuclear clusters or compact galaxies. While some facts are well established, the increasing amount of observational data are revealing a complexity that has so far defied the attempts to interpret the whole data set in a simple scenario. We review this topic focusing on the main observational features of clusters in the Milky Way and its satellites. We find that most of the observational facts related to the chemical evolution in globular clusters are described as being primarily a function of the initial mass of the clusters, tuned by further dependence on the metallicity - that mainly affects specific aspects of the nucleosynthesis processes involved - and on the environment, that likely determines the possibility of indepenedent chemical evolution of the fragments or satellites, where the clusters form. We review the impact of multiple populations on different regions of the colour-magnitude diagram and underline the constraints related to the observed abundances of lithium, to the cluster dynamics, and to the frequency of binaries in stars of different chemical composition. We then re-consider the issues related to the mass budget and the relation between globular cluster and field stars. Any successful model of globular cluster formation should explain these facts.



rate research

Read More

Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk structure in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about to undergo its next burst of growth as ALMA reaches its full potential. We discuss what we have learned about transitional disks from SEDs, color-color diagrams, and imaging in the (sub)mm and infrared. We then distill the observations into constraints for the main disk clearing mechanisms proposed to date (i.e., photoevaporation, grain growth, and companions) and explore how the expected observational signatures from these mechanisms, particularly planet-induced disk clearing, compare to actual observations. Lastly, we discuss future avenues of inquiry to be pursued with ALMA, JWST, and next generation of ground-based telescopes.
Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population -- one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 +/- 0.013 +/- 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 +/- 0.07 +/- 0.09 mag (2.39 +/- 0.07 +/- 0.10 kpc). The V luminosity at the stellar main sequence turnoff implies an absolute cluster age of 13.4 +/- 0.7 +/- 1.2 Gyr.
We present Ca-CN-CH-NH photometry for the well-known globular cluster (GC) M3 (NGC 5272). We show new evidence for two M3 populations with distinctly different carbon and nitrogen abundances, seen in a sharp division between CN-weak and CN-strong red-giant branches (RGBs) in M3. The CN-strong population shows a C-N anticorrelation that is a natural consequence of the CN cycle, while the CN-weak population shows no or a weak C-N anticorrelation. Additionally, the CN-weak population exhibits an elongated spatial distribution that is likely linked to its fast rotation. Our derived metallicity reveals bimodal metallicity distributions in both populations, with $langle$[Fe/H]$rangleapprox-$1.60 and $-$1.45, which appear to be responsible for the discrete double RGB bumps in the CN-weak and the large $W^{1G}_{F275W-F814W}$ range. From this discovery, we propose that M3 consists of two GCs, namely the C1 (23%, $langle$[Fe/H]$rangleapprox-1.60$) and C2 (77%, $langle$[Fe/H]$rangleapprox-1.45$), each of which has its own C-N anticorrelation and structural and kinematical property, which is a strong indication of independent systems in M3. The fractions of the CN-weak population for both the C1 and C2 are high compared to Galactic GCs but they are in good agreement with GCs in Magellanic Clouds. It is believed that M3 is a merger remnant of the two GCs, most likely in a dwarf galaxy environment, and accreted to our Galaxy later in time. This is consistent with recent proposals of an ex-situ origin of M3.
We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium and high resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H]=-1.84+-0.02 and an alpha-enhancement of +0.38+-0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular we found a Na-O anti-correlation and Na-Al correlation. The cluster contains only 15% of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic Halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. A anti-relation between the light s-process element Y and Na may also be present.
With a high value of heliocentric radial velocity, a retrograde orbit, and being suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions (PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. Proper motion based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalogue will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is $sim$14.3 years. To standardize the $BVI$ photometry, Stetsons secondary standard stars are used. The CCD data with an epoch gap of $sim$14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than $sim$0.8 mas~yr$^{-1}$ for stars having $V<$18 mag that increases up to $sim$1.5 mas~yr$^{-1}$ for stars with $18<V<20$ mag. Kinematic membership probabilities are calculated using proper motions for stars brighter than $Vsim$20 mag. An electronic catalogue of positions, relative PMs, $BVI$ magnitudes and membership probabilities in $sim$19.7$times$17 arcmin$^2$ region of NGC 3201 is presented. We use our membership catalogue to identify probable cluster members among the known variables and $X$-ray sources in the direction of NGC 3201.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا