Do you want to publish a course? Click here

Damping in Ru/Co-based multilayer films with large Dzyaloshinskii-Moriya interaction

66   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent development of the magnetic material engineering led to achievement of the systems with a high interfacial Dzyaloshinskii-Moriya interaction (DMI). As a result, the formation of non-collinear magnetic soliton states or nonreciprocal spin wave dynamics is achievable. Typically used materials are based on bi-layers Heavy Metal/Ferromagnet, e.g., Pt/Co. These layers are characterized not only by a strong DMI, but also by the spin pumping effect and the resulting relatively large damping. Here, we show that the considerable interfacial DMI can be also present in bi-layers based on Ru/Co, characterized with low spin pumping effect and low damping. It is therefore a good candidate for the dynamical studies and implementations of chiral DMI. It is demonstrated by theoretical calculations that the value of DMI can be strongly affected and controlled by the strain of the lattice. We show a systematic experimental and theoretical comparison of magnetic material parameters between Pt/Co and Ru/Co bi-layers as a deserving candidate for spintronic and spin-orbitronic applications.



rate research

Read More

We study theoretically, via Monte Carlo simulations on lattices containing up to 1000 x 1000 spins, thermal creation of skyrmion lattices in a 2D ferromagnetic film with perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction. At zero temperature, skyrmions only appear in the magnetization process in the presence of static disorder. Thermal fluctuations violate conservation of the topological charge and reduce the effective magnetic anisotropy that tends to suppress skyrmions. In accordance with recent experiments, we find that elevated temperatures assist the formation of skyrmion structures. Once such a structure is formed, it can be frozen into a regular skyrmion lattice by reducing the temperature. We investigate topological properties of skyrmion structures and find the average skyrmion size. Energies of domain and skyrmion states are computed. It is shown that skyrmion lattices have lower energy than labyrinth domains within a narrow field range.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
254 - A. Sud , S. Tacchi , D. Sagkovits 2021
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He$^{+}$) ion irradiation. We compare results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin light scattering results on multilayers with DMI as a function of irradiation fluence to study the effect of irradiation on the magnetic properties of the multilayers. Our results show clear evidence of the He$^{+}$ irradiation effects on the magnetic properties which is consistent with interface modification due to the effects of the He$^{+}$ irradiation. This external degree of freedom offers promising perspectives to further improve the control of magnetic skyrmions in multilayers, that could push them towards integration in future technologies, such as in low-power neuromorphic computing.
We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interfaces, it is found that the DMI in latter increases as a function of Co thickness and beyond three monolayers stabilizes with one order of magnitude larger values compared to those at graphene/Co, where the DMI shows opposite decreasing behavior. At the same time, the PMA for both systems shows similar trends with larger values for graphene/Co and no significant variations for all thickness ranges of Co. Furthermore, using micromagnetic simulations we demonstrate that such significant DMI and PMA values remaining stable over large range of Co thickness give rise to formation of skyrmions with small applied external fields in the range of 200-250 mT up to 100 K temperatures. These findings open up further possibilities towards integrating two-dimensional (2D) materials in spin-orbitronics devices.
We studied electric field modification of magnetic properties in a Pt/Co/AlO$_x$ trilayer via magneto-optical Kerr microscopy. We observed the spontaneous formation of labyrinthine magnetic domain structure due to thermally activated domain nucleation and propagation under zero applied magnetic field. A variation of the period of the labyrinthine structure under electric field is observed as well as saturation magnetization and magnetic anisotropy variations. Using an analytical formula of the stripe equilibrium width we estimate the variation of the interfacial Dzyaloshinskii-Moriya interaction under electric field as function of the exchange stiffness constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا