Do you want to publish a course? Click here

Magnetic ordering in metal-free radical thin films

110   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular systems are materials that intersect with many different promising fields such as organic/molecular electronics and spintronics, organic magnetism and quantum computing1-7. Particularly, magnetism in organic materials is very intriguing: the possibility to realize long-range magnetic order in completely metal-free systems means that magnetic moments are coupled to useful properties of organic materials, such as optical transparency, low-cost fabrication, and flexible chemical design. Magnetic ordering in light elements, such as nitrogen and carbon, has been studied in magnetic-edged graphene nanoribbons8 and bilayers9, and polymers10 while in organic thin films most of the investigations show this effect as due to the proximity of light atoms to heavy metals, impurities, or vacancies11. Purely organic radicals are molecules that carry one unpaired electron giving rise to a permanent magnetic moment, in the complete absence of metal ions.12-14 Inspired by their tremendous potential, here we investigate thin films of an exceptionally chemically stable Blatter radical derivative15 by using X-ray magnetic circular dichroism (XMCD)16-18. Here we observe XMCD at the nitrogen K-edge. Our results show a magnetic ordering different than in the single crystals and calculations indicate, although weak, a long-range intermolecular coupling. We anticipate our work to be a starting point for investigating and modelling magnetic behaviour in purely organic thin films. The tuning of the magnetic properties by the molecular arrangement in organic films is an exciting perspective towards revealing new properties and applications.



rate research

Read More

We show that using epitaxial strain and chemical pressure in orthorhombic YMnO3 and Co-substituted (YMn0.95Co0.05O3) thin films, a ferromagnetic response can be gradually introduced and tuned. These results, together with the measured anisotropy of the magnetic response, indicate that the unexpected observation of ferromagnetism in orthorhombic o-RMnO3 (R= Y, Ho, Tb, etc) films originates from strain-driven breaking of the fully compensated magnetic ordering by pushing magnetic moments away from the antiferromagnetic [010] axis. We show that the resulting canting angle and the subsequent ferromagnetic response, gradually increase (up to ~ 1.2degree) by compression of the unit cell. We will discuss the relevance of these findings, in connection to the magnetoelectric response of orthorhombic manganites.
157 - C.-H. Yang , T. Y. Koo , S.-H. Lee 2006
Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on SrTiO3 substrates, and orbital ordering and magnetic properties of the thin films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave vector (1/4 1/4 1/4) was detected by Mn K-edge resonant x-ray scattering. This peculiar orbital order inherently contains magnetic frustration. While bulk BiMnO3 is known to exhibit simple ferromagnetism, the frustration enhanced by in-plane compressive strains in the films brings about cluster-glass-like properties.
The resistance of chemically synthesized polypyrrole (PPy) thin films is investigated as a function of the pressure of various gases as well as of the film thickness. A physical, piezoresistive response is found to coexist with a chemical response if the gas is chemically active, like, e.g., oxygen. The piezoresistance is studied separately by exposing the films to the chemically inert gases such as nitrogen and argon. We observe that the character of the piezoresistive response is a function not only of the film thickness, but also of the pressure. Films of a thickness below 70 nm show a decreasing resistance as pressure is applied, while for thicker films, the piezoresistance is positive. Moreover, in some films of thickness of about 70 nm, the piezoresistive response changes from negative to positive as the gas pressure is increased above 500 mbars. This behavior is interpreted in terms of a total piezoresistance which is composed of a surface and a bulk component, each of which contributes in a characteristic way. These results suggest that in polypyrrole, chemical sensing and piezoresistivity can coexist, which needs to be kept in mind when interpreting resistive responses of such sensors.
We have investigated the magnetic damping of precessional spin dynamics in defect-controlled epitaxial grown Fe$_3$O$_4$(111)/Yttria-stabilized Zirconia (YSZ) nanoscale films by all-optical pump-probe measurements. The intrinsic damping constant of the defect-free Fe$_3$O$_4$ film is found to be strikingly larger than that of the as-grown Fe$_3$O$_4$ film with structural defects. We demonstrate that the population of the first-order perpendicular standing spin wave (PSSW) mode, which is exclusively observed in the defect-free film under sufficiently high external magnetic fields, leads to the enhancement of the magnetic damping of the uniform precession (Kittel) mode. We propose a physical picture in which the PSSW mode acts as an additional channel for the extra energy dissipation of the Kittel mode. The energy transfer from Kittel mode to PSSW mode increases as in-plane magnetization precession becomes more uniform, resulting in the unique intrinsic magnetic damping enhancement in the defect-free Fe$_3$O$_4$ film.
144 - J. Y. Jo , H. S. Han , J.-G. Yoon 2007
We investigated domain kinetics by measuring the polarization switching behaviors of polycrystalline Pb(Zr,Ti)O$_{3}$ films, which are widely used in ferroelectric memory devices. Their switching behaviors at various electric fields and temperatures could be explained by assuming the Lorentzian distribution of domain switching times. We viewed the switching process under an electric field as a motion of the ferroelectric domain through a random medium, and we showed that the local field variation due to dipole defects at domain pinning sites could explain the intriguing distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا