Do you want to publish a course? Click here

Enhancement of intrinsic magnetic damping in defect-free epitaxial Fe3O4 thin films

312   0   0.0 ( 0 )
 Added by Xianyang Lu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the magnetic damping of precessional spin dynamics in defect-controlled epitaxial grown Fe$_3$O$_4$(111)/Yttria-stabilized Zirconia (YSZ) nanoscale films by all-optical pump-probe measurements. The intrinsic damping constant of the defect-free Fe$_3$O$_4$ film is found to be strikingly larger than that of the as-grown Fe$_3$O$_4$ film with structural defects. We demonstrate that the population of the first-order perpendicular standing spin wave (PSSW) mode, which is exclusively observed in the defect-free film under sufficiently high external magnetic fields, leads to the enhancement of the magnetic damping of the uniform precession (Kittel) mode. We propose a physical picture in which the PSSW mode acts as an additional channel for the extra energy dissipation of the Kittel mode. The energy transfer from Kittel mode to PSSW mode increases as in-plane magnetization precession becomes more uniform, resulting in the unique intrinsic magnetic damping enhancement in the defect-free Fe$_3$O$_4$ film.



rate research

Read More

Atomistic defect engineering through the pulsed laser epitaxy of perovskite transition metal oxides offers facile control of their emergent opto-electromagnetic and energy properties. Among the various perovskite oxides, EuTiO3 exhibits a strong coupling between the lattice, electronic, and magnetic degrees of freedom. This coupling is highly susceptible to atomistic defects. In this study, we investigated the magnetic phase of EuTiO$_3$ epitaxial thin films via systematic defect engineering. A magnetic phase transition from an antiferromagnet to a ferromagnet was observed when the unit cell volume of EuTiO3 expanded due to the introduction of Eu-O vacancies. Optical spectroscopy and density functional theory calculations show that the change in the electronic structure as the ferromagnetic phase emerges can be attributed to the weakened Eu-Ti-Eu super-exchange interaction and the developed ferromagnetic Eu-O-Eu interaction. Facile defect engineering in EuTiO$_3$ thin films facilitates understanding and tailoring of their magnetic ground state.
445 - A. Muller 2009
Magnetite thin fims have been grown epitaxially on ZnO and MgO substrates using molecular beam epitaxy. The film quality was found to be strongly dependent on the oxygen partial pressure during growth. Structural, electronic, and magnetic properties were analyzed utilizing Low Energy Electron Diffraction (LEED), HArd X-ray PhotoElectron Spectroscopy (HAXPES), Magneto Optical Kerr Effect (MOKE), and X-ray Magnetic Circular Dichroism (XMCD). Diffraction patterns show clear indication for growth in the (111) direction on ZnO. Vertical structure analysis by HAXPES depth profiling revealed uniform magnetite thin films on both type of substrates. Both, MOKE and XMCD measurements show in-plane easy magnetization with a reduced magnetic moment in case of the films on ZnO.
We examine magnetic relaxation in polycrystalline Fe films with strong and weak crystallographic texture. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $approx$ 0.0024 for Fe films with thicknesses of 4-25 nm, regardless of their microstructural properties. The remarkable invariance with film microstructure strongly suggests that intrinsic Gilbert damping in polycrystalline Fe is a local property of nanoscale crystal grains, with limited impact from grain boundaries and film roughness. By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependences, indicating the presence of strong extrinsic damping. To fit our experimental data, we have used a grain-to-grain two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the experimental data quantitatively with physically reasonable parameters. Our finding points to the need to further examine the fundamental impact of film microstructure on extrinsic damping.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
CaFe2O4 is a highly anisotropic antiferromagnet reported to display two spin arrangements with up-up-down-down (phase A) and up-down-up-down (phase B) configurations. The relative stability of these phases is ruled by the competing ferromagnetic and antiferromagnetic interactions between Fe3+ spins arranged in two different environments, but a complete understanding of the magnetic structure of this material does not exist yet. In this study we investigate epitaxial CaFe2O4 thin films grown on TiO2 (110) substrates by means of Pulsed Laser Deposition (PLD). Structural characterization reveals the coexistence of two out-of-plane crystal orientations and the formation of three in-plane oriented domains. The magnetic properties of the films, investigated macroscopically as well as locally, including highly sensitive Mossbauer spectroscopy, reveal the presence of just one order parameter showing long-range ordering below T = 185 K and the critical nature of the transition. In addition, a non-zero in-plane magnetization is found, consistent with the presence of uncompensated spins at phase or domain boundaries, as proposed for bulk samples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا