Do you want to publish a course? Click here

Characterizing multiphoton excitation using time-resolved X-ray scattering

59   0   0.0 ( 0 )
 Added by Matthew R Ware
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular iodine was photoexcited by a strong 800 nm laser, driving several channels of multiphoton excitation. The motion following photoexcitation was probed using time-resolved X-ray scattering, which produces a scattering map $S(Q,tau)$. Temporal Fourier transform methods were employed to obtain a frequency-resolved X-ray scattering signal $tilde{S}(Q,omega)$. Taken together, $S(Q,tau)$ and $tilde{S}(Q,omega)$ separate different modes of motion, so that mode-specific nuclear oscillatory positions, oscillation amplitudes, directions of motions, and times may be measured accurately. Molecular dissociations likewise have a distinct signature, which may be used to identify both velocities and dissociation time shifts, and also can reveal laser-induced couplings among the molecular potentials.



rate research

Read More

171 - Daniel J. Haxton 2016
The global optimum for valence population transfer in the NO$_2$ molecule driven by impulsive x-ray stimulated Raman scattering of one-femtosecond x-ray pulses tuned below the Oxygen K-edge is determined with the Multiconfiguration Time-Dependent Hartree-Fock method, a fully-correlated first-principles treatment that allows for the ionization of every electron in the molecule. Final valence state populations computed in the fixed-nuclei, nonrelativistic approximation are reported as a function of central wavelength and intensity. The convergence of the calculations with respect to their adjustable parameters is fully tested. Fixing the 1fs duration but varying the central frequency and intensity of the pulse, without chirp, orientation-averaged maximum population transfer of 0.7% to the valence B$_1$ state is obtained at an intensity of 3.16$times$10$^{17}$ W cm$^{-2}$, with the central frequency substantially 6eV red-detuned from the 2nd order optimum; 2.39% is obtained at one specific orientation. The behavior near the global optimum, below the Oxygen K-edge, is consistent with the mechanism of nonresonant Raman transitions driven by the near-edge fine structure oscillator strength.
The strong coupling between intense laser fields and valence electrons in molecules causes a distortion of the potential energy hypersurfaces which determine the motion of nuclei in a molecule and influences possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, allowing for the emergence of light-induced conical intersections. Here, we demonstrate in theory and experiment that the full complexity of such light-induced potential energy surfaces can be uncovered. In H$_2^+$, the simplest of molecules, we observe a strongly modulated angular distribution of protons which has escaped prior observation. These modulations directly result from ultrafast dynamics on the light-induced molecular potentials and can be modified by varying the amplitude, duration and phase of the mid-infrared dressing field. This opens new opportunities for manipulating the dissociation of small molecules using strong laser fields.
143 - Himadri Pathak , Takeshi Sato , 2021
We present a cost-effective treatment of the triple excitation amplitudes in the time-dependent optimized coupled-cluster (TD-OCC) framework called TD-OCCDT(4) for studying intense laser-driven multielectron dynamics. It considers triple excitation amplitudes correct up to fourth-order in many-body perturbation theory and achieves a computational scaling of O(N7), with N being the number of active orbital functions. This method is applied to the electron dynamics in Ne and Ar atoms exposed to an intense near-infrared laser pulse with various intensities. We benchmark our results against the time-dependent complete-active-space self-consistent field (TD-CASSCF), time-dependent optimized coupled-cluster with double and triple excitations (TD-OCCDT), time-dependent optimized coupled-cluster with double excitations (TD-OCCD), and the time-dependent Hartree-Fock (TDHF) methods to understand how this approximate scheme performs in describing nonperturbatively nonlinear phenomena, such as field-induced ionization and high-harmonic generation. We find that the TD-OCCDT(4) method performs equally well as the TD-OCCDT method, almost perfectly reproducing the results of fully-correlated TD-CASSCF with a more favorable computational scaling.
X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered photons with an energy near 18 keV generated from solid beryllium irradiated by 8.8-9.75 keV XFEL pulses. The intensity in the X-ray focus reaches up to 4x20 W/cm2, which corresponds to a peak electric field two orders of magnitude higher than the atomic unit of field-strength and within four orders of magnitude of the quantum electrodynamic critical field. The observed signal scales quadratically in intensity and is emitted into a non-dipolar pattern, consistent with the simultaneous two-photon scattering from free electrons. However, the energy of the generated photons shows an anomalously large redshift only present at high intensities. This indicates that the instantaneous high-intensity scattering effectively interacts with a different electron momentum distribution than linear Compton scattering, with implications for the study of atomic-scale structure and dynamics of matter
We investigate the ultracold reaction dynamics of magnetically trapped NH($X ^3Sigma^-$) radicals using rigorous quantum scattering calculations involving three coupled potential energy surfaces. We find that the reactive NH + NH cross section is driven by a short-ranged collisional mechanism, and its magnitude is only weakly dependent on magnetic field strength. Unlike most ultracold reactions observed so far, the NH + NH scattering dynamics is non-universal. Our results indicate that chemical reactions can cause more trap loss than spin-inelastic NH + NH collisions, making molecular evaporative cooling more difficult than previously anticipated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا