No Arabic abstract
Biomedical data are widely accepted in developing prediction models for identifying a specific tumor, drug discovery and classification of human cancers. However, previous studies usually focused on different classifiers, and overlook the class imbalance problem in real-world biomedical datasets. There are a lack of studies on evaluation of data pre-processing techniques, such as resampling and feature selection, on imbalanced biomedical data learning. The relationship between data pre-processing techniques and the data distributions has never been analysed in previous studies. This article mainly focuses on reviewing and evaluating some popular and recently developed resampling and feature selection methods for class imbalance learning. We analyse the effectiveness of each technique from data distribution perspective. Extensive experiments have been done based on five classifiers, four performance measures, eight learning techniques across twenty real-world datasets. Experimental results show that: (1) resampling and feature selection techniques exhibit better performance using support vector machine (SVM) classifier. However, resampling and Feature Selection techniques perform poorly when using C4.5 decision tree and Linear discriminant analysis classifiers; (2) for datasets with different distributions, techniques such as Random undersampling and Feature Selection perform better than other data pre-processing methods with T Location-Scale distribution when using SVM and KNN (K-nearest neighbours) classifiers. Random oversampling outperforms other methods on Negative Binomial distribution using Random Forest classifier with lower level of imbalance ratio; (3) Feature Selection outperforms other data pre-processing methods in most cases, thus, Feature Selection with SVM classifier is the best choice for imbalanced biomedical data learning.
Objective: This study illustrates the ambiguity of ROC in evaluating two classifiers of 90-day LVAD mortality. This paper also introduces the precision recall curve (PRC) as a supplemental metric that is more representative of LVAD classifiers performance in predicting the minority class. Background: In the LVAD domain, the receiver operating characteristic (ROC) is a commonly applied metric of performance of classifiers. However, ROC can provide a distorted view of classifiers ability to predict short-term mortality due to the overwhelmingly greater proportion of patients who survive, i.e. imbalanced data. Methods: This study compared the ROC and PRC for the outcome of two classifiers for 90-day LVAD mortality for 800 patients (test group) recorded in INTERMACS who received a continuous-flow LVAD between 2006 and 2016 (mean age of 59 years; 146 females vs. 654 males) in which mortality rate is only %8 at 90-day (imbalanced data). The two classifiers were HeartMate Risk Score (HMRS) and a Random Forest (RF). Results: The ROC indicates fairly good performance of RF and HRMS classifiers with Area Under Curves (AUC) of 0.77 vs. 0.63, respectively. This is in contrast with their PRC with AUC of 0.43 vs. 0.16 for RF and HRMS, respectively. The PRC for HRMS showed the precision rapidly dropped to only 10% with slightly increasing sensitivity. Conclusion: The ROC can portray an overly-optimistic performance of a classifier or risk score when applied to imbalanced data. The PRC provides better insight about the performance of a classifier by focusing on the minority class.
A major obstacle to the development of Natural Language Processing (NLP) methods in the biomedical domain is data accessibility. This problem can be addressed by generating medical data artificially. Most previous studies have focused on the generation of short clinical text, and evaluation of the data utility has been limited. We propose a generic methodology to guide the generation of clinical text with key phrases. We use the artificial data as additional training data in two key biomedical NLP tasks: text classification and temporal relation extraction. We show that artificially generated training data used in conjunction with real training data can lead to performance boosts for data-greedy neural network algorithms. We also demonstrate the usefulness of the generated data for NLP setups where it fully replaces real training data.
There have been more than 850,000 confirmed cases and over 48,000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, there are currently no proven effective medications against COVID-19. Drug repurposing offers a promising way for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, genes, pathways, and expressions, from a large scientific corpus of 24 million PubMed publications. Using Amazon AWS computing resources, we identified 41 repurposable drugs (including indomethacin, toremifene and niclosamide) whose therapeutic association with COVID-19 were validated by transcriptomic and proteomic data in SARS-CoV-2 infected human cells and data from ongoing clinical trials. While this study, by no means recommends specific drugs, it demonstrates a powerful deep learning methodology to prioritize existing drugs for further investigation, which holds the potential of accelerating therapeutic development for COVID-19.
Pedestrian attribute recognition is an important multi-label classification problem. Although the convolutional neural networks are prominent in learning discriminative features from images, the data imbalance in multi-label setting for fine-grained tasks remains an open problem. In this paper, we propose a new re-sampling algorithm called: data augmentation imbalance (DAI) to explicitly enhance the ability to discriminate the fewer attributes via increasing the proportion of labels accounting for a small part. Fundamentally, by applying over-sampling and under-sampling on the multi-label dataset at the same time, the thought of robbing the rich attributes and helping the poor makes a significant contribution to DAI. Extensive empirical evidence shows that our DAI algorithm achieves state-of-the-art results, based on pedestrian attribute datasets, i.e. standard PA-100K and PETA datasets.
With the rapid development of biomedical software and hardware, a large amount of relational data interlinking genes, proteins, chemical components, drugs, diseases, and symptoms has been collected for modern biomedical research. Many graph-based learning methods have been proposed to analyze such type of data, giving a deeper insight into the topology and knowledge behind the biomedical data, which greatly benefit to both academic research and industrial application for human healthcare. However, the main difficulty is how to handle high dimensionality and sparsity of the biomedical graphs. Recently, graph embedding methods provide an effective and efficient way to address the above issues. It converts graph-based data into a low dimensional vector space where the graph structural properties and knowledge information are well preserved. In this survey, we conduct a literature review of recent developments and trends in applying graph embedding methods for biomedical data. We also introduce important applications and tasks in the biomedical domain as well as associated public biomedical datasets.