Do you want to publish a course? Click here

A Catalog of Galaxies in the Direction of the Perseus Cluster

81   0   0.0 ( 0 )
 Added by Carolin Wittmann
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a catalog of 5437 morphologically classified sources in the direction of the Perseus galaxy cluster core, among them 496 early-type low-mass galaxy candidates. The catalog is primarily based on V-band imaging data acquired with the William Herschel Telescope, which we used to conduct automated source detection and to derive photometry. We additionally reduced archival Subaru multiband imaging data in order to measure aperture colors and to perform a morphological classification, benefiting from 0.5 arcsec seeing conditions in the r-band data. Based on morphological and color properties, we extracted a sample of early-type low-mass galaxy candidates with absolute V-band magnitudes in the range of -10 to -20 mag. In the color-magnitude diagram the galaxies are located where the red sequence for early-type cluster galaxies is expected, and they lie on the literature relation between absolute magnitude and S{e}rsic index. We classified the early-type dwarf candidates into nucleated and nonnucleated galaxies. For the faint candidates, we found a trend of increasing nucleation fraction toward brighter luminosity or higher surface brightness, similar to what is observed in other nearby galaxy clusters. We morphologically classified the remaining sources as likely background elliptical galaxies, late-type galaxies, edge-on disk galaxies, and likely merging systems and discussed the expected contamination fraction through non-early-type cluster galaxies in the magnitude-size surface brightness parameter space. Our catalog reaches its 50 per cent completeness limit at an absolute V-band luminosity of -12 mag and a V-band surface brightness of 26 mag arcsec$^{-2}$. This makes it to the largest and deepest catalog with coherent coverage compared to previous imaging studies of the Perseus cluster.



rate research

Read More

Open clusters (OCs) are popular tracers of the structure and evolutionary history of the Galactic disk. The OC population is often considered to be complete within 1.8 kpc of the Sun. The recent Gaia Data Release 2 (DR2) allows the latter claim to be challenged. We perform a systematic search for new OCs in the direction of Perseus using precise and accurate astrometry from Gaia DR2. We implement a coarse-to-fine search method. First, we exploit spatial proximity using a fast density-aware partitioning of the sky via a k-d tree in the spatial domain of Galactic coordinates, (l, b). Secondly, we employ a Gaussian mixture model in the proper motion space to quickly tag fields around OC candidates. Thirdly, we apply an unsupervised membership assignment method, UPMASK, to scrutinise the candidates. We visually inspect colour-magnitude diagrams to validate the detected objects. Finally, we perform a diagnostic to quantify the significance of each identified overdensity in proper motion and in parallax space We report the discovery of 41 new stellar clusters. This represents an increment of at least 20% of the previously known OC population in this volume of the Milky Way. We also report on the clear identification of NGC 886, an object previously considered an asterism. This letter challenges the previous claim of a near-complete sample of open clusters up to 1.8 kpc. Our results reveal that this claim requires revision, and a complete census of nearby open clusters is yet to be found.
We present new deep, high-resolution, 1.5 GHz observations of the prototypical nearby Perseus galaxy cluster from the Karl G. Jansky Very Large Array. We isolate for the first time the complete tail of radio emission of the bent-jet radio galaxy NGC 1272, which had been previously mistaken to be part of the radio mini-halo. The possibility that diffuse radio galaxy emission contributes to mini-halo emission may be a general phenomenon in relaxed cool-core clusters, and should be explored. The collimated jets of NGC 1272 initially bend to the west, and then transition eastward into faint, 60 kpc-long extensions with eddy-like structures and filaments. We suggest interpretations for these structures that involve bulk motions of intracluster gas, the galaxys orbit in the cluster including projection effects, and the passage of the galaxy through a sloshing cold front. Instabilities and turbulence created at the surface of this cold front and in the turbulent wake of the infalling host galaxy most likely play a role in the formation of the observed structures. We also discover a series of faint rings, south-east of NGC 1272, which are a type of structure that has never been seen before in galaxy clusters.
Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.
We present the results of a Keck-ESI spectroscopic study of six dwarf elliptical (dE) galaxies in the Perseus Cluster core, and confirm two dwarfs as cluster members for the first time. All six dEs follow the size-magnitude relation for dE/dSph galaxies. Central velocity dispersions are measured for three Perseus dwarfs in our sample, and all lie on the $sigma$-luminosity relation for early-type, pressure supported systems. We furthermore examine SA 0426-002, a unique dE in our sample with a bar-like morphology surrounded by low-surface brightness wings/lobes ($mu_{B} = 27$ mag arcsec$^{-2}$). Given its morphology, velocity dispersion ($sigma_{0} = 33.9 pm 6.1 $ km s$^{-1}$), velocity relative to the brightest cluster galaxy NGC 1275 (2711 km s$^{-1}$), size ($R_{e} =2.1 pm 0.10$ kpc), and Sersic index ($n= 1.2 pm 0.02$), we hypothesise the dwarf has morphologically transformed from a low mass disc to dE via harassment. The low-surface brightness lobes can be explained as a ring feature, with the bar formation triggered by tidal interactions via speed encounters with Perseus Cluster members. Alongside spiral structure found in dEs in Fornax and Virgo, SA 0426-002 provides crucial evidence that a fraction of bright dEs have a disc infall origin, and are not part of the primordial cluster population.
We present the results of a spectroscopic survey performed in the outskirts of the globular cluster NGC1851 with VIMOS@VLT. The radial velocities of 107 stars in a region between 12 and 33 around the cluster have been derived. We clearly identify the cluster stellar population over the entire field of view, indicating the presence of a significant fraction of stars outside the tidal radius predicted by King models. We also find tentative evidence of a cold (sigma_v< 20 km/s) peak in the distribution of velocities at v_r~180 km/s constituted mainly by Main Sequence stars whose location in the color-magnitude diagram is compatible with a stream at a similar distance of this cluster. If confirmed, this evidence would strongly support the extra-Galactic origin of this feature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا