Do you want to publish a course? Click here

Select, Answer and Explain: Interpretable Multi-hop Reading Comprehension over Multiple Documents

108   0   0.0 ( 0 )
 Added by Ming Tu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Interpretable multi-hop reading comprehension (RC) over multiple documents is a challenging problem because it demands reasoning over multiple information sources and explaining the answer prediction by providing supporting evidences. In this paper, we propose an effective and interpretable Select, Answer and Explain (SAE) system to solve the multi-document RC problem. Our system first filters out answer-unrelated documents and thus reduce the amount of distraction information. This is achieved by a document classifier trained with a novel pairwise learning-to-rank loss. The selected answer-related documents are then input to a model to jointly predict the answer and supporting sentences. The model is optimized with a multi-task learning objective on both token level for answer prediction and sentence level for supporting sentences prediction, together with an attention-based interaction between these two tasks. Evaluated on HotpotQA, a challenging multi-hop RC data set, the proposed SAE system achieves top competitive performance in distractor setting compared to other existing systems on the leaderboard.



rate research

Read More

Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.
How can we generate concise explanations for multi-hop Reading Comprehension (RC)? The current strategies of identifying supporting sentences can be seen as an extractive question-focused summarization of the input text. However, these extractive explanations are not necessarily concise i.e. not minimally sufficient for answering a question. Instead, we advocate for an abstractive approach, where we propose to generate a question-focused, abstractive summary of input paragraphs and then feed it to an RC system. Given a limited amount of human-annotated abstractive explanations, we train the abstractive explainer in a semi-supervised manner, where we start from the supervised model and then train it further through trial and error maximizing a conciseness-promoted reward function. Our experiments demonstrate that the proposed abstractive explainer can generate more compact explanations than an extractive explainer with limited supervision (only 2k instances) while maintaining sufficiency.
Multi-hop reading comprehension across multiple documents attracts much attention recently. In this paper, we propose a novel approach to tackle this multi-hop reading comprehension problem. Inspired by human reasoning processing, we construct a path-based reasoning graph from supporting documents. This graph can combine both the idea of the graph-based and path-based approaches, so it is better for multi-hop reasoning. Meanwhile, we propose Gated-RGCN to accumulate evidence on the path-based reasoning graph, which contains a new question-aware gating mechanism to regulate the usefulness of information propagating across documents and add question information during reasoning. We evaluate our approach on WikiHop dataset, and our approach achieves state-of-the-art accuracy against previously published approaches. Especially, our ensemble model surpasses human performance by 4.2%.
This paper presents a novel method to generate answers for non-extraction machine reading comprehension (MRC) tasks whose answers cannot be simply extracted as one span from the given passages. Using a pointer network-style extractive decoder for such type of MRC may result in unsatisfactory performance when the ground-truth answers are given by human annotators or highly re-paraphrased from parts of the passages. On the other hand, using generative decoder cannot well guarantee the resulted answers with well-formed syntax and semantics when encountering long sentences. Therefore, to alleviate the obvious drawbacks of both sides, we propose an answer making-up method from extracted multi-spans that are learned by our model as highly confident $n$-gram candidates in the given passage. That is, the returned answers are composed of discontinuous multi-spans but not just one consecutive span in the given passages anymore. The proposed method is simple but effective: empirical experiments on MS MARCO show that the proposed method has a better performance on accurately generating long answers, and substantially outperforms two competitive typical one-span and Seq2Seq baseline decoders.
Multi-hop machine reading comprehension is a challenging task in natural language processing, which requires more reasoning ability and explainability. Spectral models based on graph convolutional networks grant the inferring abilities and lead to competitive results, however, part of them still face the challenge of analyzing the reasoning in a human-understandable way. Inspired by the concept of the Grandmother Cells in cognitive neuroscience, a spatial graph attention framework named crname, imitating the procedure was proposed. This model is designed to assemble the semantic features in multi-angle representations and automatically concentrate or alleviate the information for reasoning. The name crname is a metaphor for the pattern of the model: regard the subjects of queries as the start points of clues, take the reasoning entities as bridge points, and consider the latent candidate entities as the grandmother cells, and the clues end up in candidate entities. The proposed model allows us to visualize the reasoning graph and analyze the importance of edges connecting two entities and the selectivity in the mention and candidate nodes, which can be easier to be comprehended empirically. The official evaluations in open-domain multi-hop reading dataset WikiHop and Drug-drug Interactions dataset MedHop prove the validity of our approach and show the probability of the application of the model in the molecular biology domain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا