Do you want to publish a course? Click here

Abstract 3-Rigidity and Bivariate $C_2^1$-Splines I: Whiteleys Maximality Conjecture

133   0   0.0 ( 0 )
 Added by Shin-Ichi Tanigawa
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A conjecture of Graver from 1991 states that the generic $3$-dimensional rigidity matroid is the unique maximal abstract $3$-rigidity matroid with respect to the weak order on matroids. Based on a close similarity between the generic $d$-dimensional rigidity matroid and the generic $C_{d-2}^{d-1}$-cofactor matroid from approximation theory, Whiteley made an analogous conjecture in 1996 that the generic $C_{d-2}^{d-1}$-cofactor matroid is the unique maximal abstract $d$-rigidity matroid for all $dgeq 2$. We verify the case $d=3$ of Whiteleys conjecture in this paper. A key step in our proof is to verify a second conjecture of Whiteley that the `double V-replacement operation preserves independence in the generic $C_2^1$-cofactor matroid.



rate research

Read More

We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lov{a}sz and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.
A P-graph is a simple graph G which is embeddable in the real projective plane P. A (3,6)-tight P-graph is shown to be constructible from one of 8 uncontractible P-graphs by a sequence of vertex splitting moves. Also it is shown that a P-graph is minimally generically 3-rigid if and only if it is (3,6)-tight. In particular this characterisation holds for graphs that are embeddable in the M{o}bius strip.
151 - Imed Zaguia 2016
A balanced pair in an ordered set $P=(V,leq)$ is a pair $(x,y)$ of elements of $V$ such that the proportion of linear extensions of $P$ that put $x$ before $y$ is in the real interval $[1/3, 2/3]$. We define the notion of a good pair and claim any ordered set that has a good pair will satisfy the conjecture and furthermore every ordered set which is not totally ordered and has a forest as its cover graph has a good pair.
211 - Henk Don 2015
A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. v{C}erny conjectured in 1964 that a synchronizing automaton with $n$ states has a synchronizing word of length at most $(n-1)^2$. We introduce the notion of aperiodically $1-$contracting automata and prove that in these automata all subsets of the state set are reachable, so that in particular they are synchronizing. Furthermore, we give a sufficient condition under which the v{C}erny conjecture holds for aperiodically $1-$contracting automata. As a special case, we prove some results for circular automata.
A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the $R$-module of generalized splines and produce minimum generating sets for several families of graphs and edge-labelings: $1)$ for all graphs when the edge-labelings consist of at most two finitely-generated ideals, and $2)$ for cycles when the edge-labelings consist of principal ideals generated by elements of the form $(ax+by)^2$ in the polynomial ring $mathbb{C}[x,y]$. We obtain the generators using a constructive algorithm that is suitable for computer implementation and give several applications, including contextualizing several results in classical (analytic) splines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا