Do you want to publish a course? Click here

Seebeck coefficient in low-dimensional fluctuating charge-density-wave systems

421   0   0.0 ( 0 )
 Added by Claude Bourbonnais
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the role of charge density-wave fluctuations on the temperature dependence of Seebeck coefficient in quasi-one dimensional conductors with a Peierls instability. The description of low-dimensional incommensurate charge density-wave fluctuations as obtained by a generalized Ginzburg-Landau approach for arrays of weakly coupled chains is embodied in the numerical solution of the semi-classical Boltzmann transport equation. The energy and temperature dependence of the scattering time of electrons on fluctuations can then be extracted and its influence on the Seebeck coefficient calculated. The connexion between theory and experiments carried out on molecular conductors is presented and critically discussed.



rate research

Read More

We study the influence of inelastic electron-electron scattering on the temperature variation of the Seebeck coefficient in the normal phase of quasi-one-dimensional organic superconductors. The theory is based on the numerical solution of the semi-classical Boltzmann equation for which the collision integral equation is solved with the aid of the electronic umklapp scattering vertex calculated by the renormalization group method. We show that the one-loop renormalization group flow of momentum and temperature dependent umklapp scattering, in the presence of nesting alterations of the Fermi surface, introduce electron-hole asymmetry in the energy dependence of the anisotropic scattering time. This is responsible for the enhancement of the Seebeck coefficient with respect to the band $T$-linear prediction and even its sign reversal around the quantum critical point of the phase diagram, namely where the interplay between antiferromagnetism and superconductivity along with the strength of spin fluctuations are the strongest. Comparison of the results with available data on low dimensional organic superconductors is presented and critically discussed.
We report the observation of a two-dimensional (2D) checkerboard charge density wave (CDW) in the low-dimensional superconductor Ta4Pd3Te16. By determining its CDW properties across the temperature-pressure (T-P) phase diagram and comparing with prototypical CDW materials, we conclude that Ta4Pd3Te16 features: a) an incommensurate CDW with a mixed character of dimensions (Q1D considering its needle-like shape along the b-axis, Q2D as the CDW has checkerboard wavevectors, and 3D because of CDW projections along all three axes); and b) one of the weakest CDWs compared to its superconductivity (SC), i.e. enhanced SC with respect to CDW, suggesting an interesting interplay of the two orders.
We report on a Raman scattering investigation of the charge-density-wave (CDW), quasi two-dimensional rare-earth tri-tellurides $R$Te$_3$ ($R$= La, Ce, Pr, Nd, Sm, Gd and Dy) at ambient pressure, and of LaTe$_3$ and CeTe$_3$ under externally applied pressure. The observed phonon peaks can be ascribed to the Raman active modes for both the undistorted as well as the distorted lattice in the CDW state by means of a first principles calculation. The latter also predicts the Kohn anomaly in the phonon dispersion, driving the CDW transition. The integrated intensity of the two most prominent modes scales as a characteristic power of the CDW-gap amplitude upon compressing the lattice, which provides clear evidence for the tight coupling between the CDW condensate and the vibrational modes.
We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical electron-phonon coupling strength. In our work, we focus on the real-time evolution starting from two different types of initial states that are CDW ordered: (i) ideal CDW states with and without additional phonons in the system and (ii) correlated ground states in the CDW phase. We identify the mechanism for CDW melting in the ensuing real-time dynamics and show that it strongly depends on the type of initial state. We focus on the far-from-equilibrium regime and emphasize the role of electron-phonon coupling rather than dominant electronic correlations, thus complementing a previous study of photo-induced CDW melting [H. Hashimoto and S. Ishihara, Phys. Rev. B 96, 035154 (2017)]. The numerical simulations are performed by means of matrix-product-state based methods with a local basis optimization (LBO). Within these techniques, one rotates the local (bosonic) Hilbert spaces adaptively into an optimized basis that can then be truncated while still maintaining a high precision. In this work, we extend the time-evolving block decimation (TEBD) algorithm with LBO, previously applied to single-polaron dynamics, to a half-filled system. We demonstrate that in some parameter regimes, a conventional TEBD method without LBO would fail. Furthermore, we introduce and use a ground-state density-matrix renormalization group method for electron-phonon systems using local basis optimization. In our examples, we account for up to $M_{rm ph} = 40$ bare phonons per site by working with $O(10)$ optimal phonon modes.
We investigate the spin Seebeck coefficient $S_s$ in the square lattice Hubbard model at high temperatures of relevance to cold-atom measurements. We solve the model with the finite-temperature Lanczos and with the dynamical mean-field theory methods and find they give similar results in the considered regime. $S_s$ exceeds the atomic Heikes estimates and the Kelvin entropic estimates drastically. We analyze the behavior in terms of a mapping onto the problem of a doped attractive model and derive an aproximate expression that allows relating the enhancement of $S_s$ to distinct scattering of the spin-majority and spin-minority excitations. Our analysis reveals the limitations of entropic interpretations of Seebeck coefficient even in the high-temperature regime. Large values of $S_s$ could be observed on optical lattices and might need to be taken into account to properly explain the measured values of spin diffusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا