Do you want to publish a course? Click here

Gyrokinetic investigation of the damping channels of Alfven modes in ASDEX Upgrade

73   0   0.0 ( 0 )
 Added by Francesco Vannini
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The linear destabilization and nonlinear saturation of energetic-particle driven Alfvenic instabilities in tokamaks strongly depend on the damping channels. In this work, the collisionless damping mechanisms of Alfvenic modes are investigated within a gyrokinetic framework, by means of global simulations with the particle-in-cell code ORB5, and compared with the eigenvalue code LIGKA and reduced models. In particular, the continuum damping and the Landau damping (of ions and electrons) are considered. The electron Landau damping is found to be dominant on the ion Landau damping for experimentally relevant cases. As an application, the linear and nonlinear dynamics of toroidicity induced Alfven eigenmodes and energetic-particle driven modes in ASDEX Upgrade is investigated theoretically and compared with experimental measurements.



rate research

Read More

The global and electromagnetic gyrokinetic particle-in-cell code ORB5 is employed to investigate the self-consistent interactions between Alfven modes (AM) and ion temperature gradient (ITG) turbulence in a magnetically confined plasma. Here, an axisymmetric magnetic equilibrium with reversed shear and large aspect ratio is considered. An AM with toroidal mode number n=5 is driven unstable by introducing a population of suprathermal ions. Once the AM saturates in the presence of the fully developed turbulence, the ion heat flux is dominated by the AM and its main harmonics. ITG-induced transport is found to also be enhanced in the presence of the unstable AM.
The nonlinear dynamics of beta-induced Alfven Eigenmodes (BAE) driven by energetic particles (EP) in the presence of ion-temperature-gradient (ITG) turbulence is investigated, by means of selfconsistent global gyrokinetic simulations and analytical theory. A tokamak magnetic equilibrium with large aspect ratio and reversed shear is considered. A previous study of this configuration has shown that the electron species plays an important role in determining the nonlinear saturation level of a BAE in the absence of turbulence [A. Biancalani, et al., J. Plasma Phys. (2020)]. Here, we extend the study to a turbulent plasma. The EPs are found modify the heat fluxes by introducing energy at the large spatial scales, mainly at the toroidal mode number of the dominant BAE and its harmonics. In this regime, BAEs are found to carry a strong electron heat flux. The feed-back of the global relaxation of the temperature profiles induced by the BAE, and on the turbulence dynamics, is also discussed.
This paper presents a study of the interaction between Alfven modes and zonal structures, considering a realistic ASDEX Upgrade equilibrium. The results of gyrokinetic simulations with the global, electromagnetic, particle-in-cell code ORB5 are presented, where the modes are driven unstable by energetic particles with a bump-on-tail equilibrium distribution function, with radial density gradient. Two regimes have been observed: at low energetic particles concentration, the Alfven mode saturates at much higher level in presence of zonal structures; on the other hand at high energetic particles concentration the difference is less pronounced. The former regime is characterized by the zonal structure (identified as an energetic particle driven geodesic acoustic mode), being more unstable than the Alfven mode. In the latter regime the Alfven mode is more unstable than the zonal structure. The theoretical explanation is given in terms of a 3-wave coupling of the energetic particle driven geodesic acoustic mode and Alfven mode, mediated by the curvature-pressure coupling term of the energetic particles.
Turbulence in tokamaks generates radially sheared zonal flows. Their oscillatory counterparts, geodesic acoustic modes (GAMs), appear due to the action of the magnetic field curvature. The GAMs can be driven unstable by an anisotropic energetic particle (EP) population leading to the formation of global radial structures, called EGAMs. The EGAMs can redistribute EP energy to the bulk plasma through collisionless wave-particle interaction. In such a way, the EGAMs might contribute to the plasma heating. Thus, investigation of EGAM properties, especially in the velocity space, is necessary for precise understanding of the transport phenomena in tokamak plasmas. In this work, the nonlinear dynamics of EGAMs without considering the mode interaction with the turbulence is investigated with the help of a Mode-Particle-Resonance (MPR) diagnostic implemented in the global gyrokinetic particle-in-cell code ORB5. An ASDEX Upgrade discharge is chosen as a reference case for this investigation due to its rich EP nonlinear dynamics. An experimentally relevant magnetic field configuration, thermal species profiles and an EP density profile are taken for EGAM chirping modelling and its comparison with available empirical data. The same magnetic configuration is used to explore energy transfer by the mode from the energetic particles to the thermal plasma including kinetic electron effects. For a given EGAM level the plasma heating by the mode can be significantly enhanced by varying the EP parameters. Electron dynamics decreases the EGAM saturation amplitude and consequently reduces the plasma heating, even though the mode transfers its energy to thermal ions much more than to electrons.
Geodesic acoustic modes (GAMs) are studied by means of the gyrokinetic global particle-in-cell code ORB5. Linear electromagnetic simulations in the low electron beta limit have been performed, in order to separate acoustic and Alfvenic time scales and obtain more accurate measurements. The dependence of the frequency and damping rate on several parameters such as the safety factor, the GAM radial wavenumber and the plasma elongation is studied. All simulations have been performed with kinetic electrons with realistic electron/ion mass ratio. Interpolating formulae for the GAM frequency and damping rate, based on the results of the gyrokinetic simulations, have been derived. Using these expressions, the influence of the temperature gradient on the damping rate is also investigated. Finally, the results are applied to the study of a real discharge of the ASDEX Upgrade tokamak.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا