No Arabic abstract
Starting from the stochastic thermodynamics description of two coupled underdamped Brownian particles, we showcase and compare three different coarse-graining schemes leading to an effective thermodynamic description for the first of the two particles: marginalization over one particle, bipartite structure with information flows and the Hamiltonian of mean force formalism. In the limit of time-scale separation where the second particle with a fast relaxation time scale locally equilibrates with respect to the coordinates of the first slowly relaxing particle, the effective thermodynamics resulting from the first and third approach are shown to capture the full thermodynamics and to coincide with each other. In the bipartite approach, the slow part does not, in general, allow for an exact thermodynamic description as the entropic exchange between the particles is ignored. Physically, the second particle effectively becomes part of the heat reservoir. In the limit where the second particle becomes heavy and thus deterministic, the effective thermodynamics of the first two coarse-graining methods coincides with the full one. The Hamiltonian of mean force formalism however is shown to be incompatible with that limit. Physically, the second particle becomes a work source. These theoretical results are illustrated using an exactly solvable harmonic model.
Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation - a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.
Single-file transport in pore-like structures constitute an important topic for both theory and experiment. For hardcore interacting particles, a good understanding of the collective dynamics has been achieved recently. Here we study how softness in the particle interaction affects the emergent transport behavior. To this end, we investigate driven Brownian motion of particles in a periodic potential. The particles interact via a repulsive softcore potential with a shape corresponding to a smoothed rectangular barrier. This shape allows us to elucidate effects of mutual particle penetration and particle crossing in a controlled manner. We find that even weak deviations from the hardcore case can have a strong impact on the particle current. Despite of this fact, the knowledge about the transport in a corresponding hardcore system is shown to be useful to describe and interpret our findings for the softcore case. This is achieved by assigning a thermodynamic effective size to the particles based on the equilibrium density functional of hard spheres.
For systems in an externally controllable time-dependent potential, the optimal protocol minimizes the mean work spent in a finite-time transition between two given equilibrium states. For overdamped dynamics which ignores inertia effects, the optimal protocol has been found to involve jumps of the control parameter at the beginning and end of the process. Including the inertia term, we show that this feature not only persists but that even delta peak-like changes of the control parameter at both boundaries make the process optimal. These results are obtained by analyzing two simple paradigmatic cases: First, a Brownian particle dragged by a harmonic optical trap through a viscous fluid and, second, a Brownian particle subject to an optical trap with time-dependent stiffness. These insights could be used to improve free energy calculations via either thermodynamic integration or fast growth methods using Jarzynskis equality.
We propose a new look at the heat bath for two Brownian particles, in which the heat bath as a `system is both perturbed and sensed by the Brownian particles. Non-local thermal fluctuation give rise to bath-mediated static forces between the particles. Based on the general sum-rule of the linear response theory, we derive an explicit relation linking these forces to the friction kernel describing the particles dynamics. The relation is analytically confirmed in the case of two solvable models and could be experimentally challenged. Our results point out that the inclusion of the environment as a part of the whole system is important for micron- or nano-scale physics.
We study the conservative and deterministic dynamics of two nonlinearly interacting particles evolving in a one-dimensional spatially periodic washboard potential. A weak tilt of the washboard potential is applied biasing one direction for particle transport. However, the tilt vanishes asymptotically in the direction of bias. Moreover, the total energy content is not enough for both particles to be able to escape simultaneously from an initial potential well; to achieve transport the coupled particles need to interact cooperatively. For low coupling strength the two particles remain trapped inside the starting potential well permanently. For increased coupling strength there exists a regime in which one of the particles transfers the majority of its energy to the other one, as a consequence of which the latter escapes from the potential well and the bond between them breaks. Finally, for suitably large couplings, coordinated energy exchange between the particles allows them to achieve escapes -- one particle followed by the other -- from consecutive potential wells resulting in directed collective motion. The key mechanism of transport rectification is based on the asymptotically vanishing tilt causing a symmetry breaking of the non-chaotic fraction of the dynamics in the mixed phase space. That is, after a chaotic transient, only at one of the boundaries of the chaotic layer do resonance islands appear. The settling of trajectories in the ballistic channels associated with transporting islands provides long-range directed transport dynamics of the escaping dimer.