Do you want to publish a course? Click here

Higher-Form Symmetries, Bethe Vacua, and the 3d-3d Correspondence

97   0   0.0 ( 0 )
 Added by Brian Willett
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

By incorporating higher-form symmetries, we propose a refined definition of the theories obtained by compactification of the 6d $(2,0)$ theory on a three-manifold $M_3$. This generalization is applicable to both the 3d $mathcal{N}=2$ and $mathcal{N}=1$ supersymmetric reductions. An observable that is sensitive to the higher-form symmetries is the Witten index, which can be computed by counting solutions to a set of Bethe equations that are determined by $M_3$. This is carried out in detail for $M_3$ a Seifert manifold, where we compute a refined version of the Witten index. In the context of the 3d-3d correspondence, we complement this analysis in the dual topological theory, and determine the refined counting of flat connections on $M_3$, which matches the Witten index computation that takes the higher-form symmetries into account.



rate research

Read More

We explore aspects of the correspondence between Seifert 3-manifolds and 3d $mathcal{N}=2$ supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d $mathcal{N}=2$ theories constructed from boundary conditions and interfaces in a 4d $mathcal{N}=2^*$ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-t Hooft loops in the 4d $mathcal{N}=2^*$ theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the $S$-matrix of refined Chern-Simons theory.
One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d $N=2$ SCFT $T[M_3]$ --- or, rather, a collection of SCFTs as we refer to it in the paper --- for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this paper is to overcome this challenge by a more systematic study of 3d-3d correspondence that, first of all, does not rely heavily on any geometric structure on $M_3$ and, secondly, is not limited to a particular supersymmetric partition function of $T[M_3]$. In particular, we propose to describe such collection of SCFTs in terms of 3d $N=2$ gauge theories with non-linear matter fields valued in complex group manifolds. As a result, we are able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants, from twisted indices and half-indices of $T[M_3]$, and propose new tools to compute more recent $q$-series invariants $hat Z (M_3)$ in the case of manifolds with $b_1 > 0$. Although we use genus-1 mapping tori as our case study, many results and techniques readily apply to more general 3-manifolds, as we illustrate throughout the paper.
We study higher-form symmetries in 5d quantum field theories, whose charged operators include extended operators such as Wilson line and t Hooft operators. We outline criteria for the existence of higher-form symmetries both from a field theory point of view as well as from the geometric realization in M-theory on non-compact Calabi-Yau threefolds. A geometric criterion for determining the higher-form symmetry from the intersection data of the Calabi-Yau is provided, and we test it in a multitude of examples, including toric geometries. We further check that the higher-form symmetry is consistent with dualities and is invariant under flop transitions, which relate theories with the same UV-fixed point. We explore extensions to higher-form symmetries in other compactifications of M-theory, such as $G_2$-holonomy manifolds, which give rise to 4d $mathcal{N}=1$ theories.
We study higher-form symmetries in a low-energy effective theory of a massless axion coupled with a photon in $(3+1)$ dimensions. It is shown that the higher-form symmetries of this system are accompanied by a semistrict 3-group (2-crossed module) structure, which can be found by the correlation functions of symmetry generators of the higher-form symmetries. We argue that the Witten effect and anomalous Hall effect in the axion electrodynamics can be described in terms of 3-group transformations.
We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symmetry. By embedding four-dimensional Chern-Simons theory in a partial twist of the five-dimensional maximally supersymmetric Yang-Mills theory on a manifold with corners, we argue that this three-dimensional Toda theory is dual to a two-dimensional topological sigma model with A-branes on the moduli space of solutions to the Bogomolny equations. This furnishes a novel 3d-2d correspondence, which, among other mathematical implications, also reveals that modules of the 3d W-algebra are modules for the quantized algebra of certain holomorphic functions on the Bogomolny moduli space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا