Do you want to publish a course? Click here

High resolution time- and angle-resolved photoemission spectroscopy with 11 eV laser pulses

160   0   0.0 ( 0 )
 Added by Changmin Lee
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Performing time and angle resolved photoemission spectroscopy (tr-ARPES) at high momenta necessitates extreme ultraviolet laser pulses, which are typically produced via high harmonic generation (HHG). Despite recent advances, HHG-based setups still require large pulse energies (hundreds of $mu$J to mJ) and their energy resolution is limited to tens of meV. Here, we present a novel 11 eV tr-ARPES setup that generates a flux of $5times10^{10}$ photons/s and achieves an unprecedented energy resolution of 16 meV. It can be operated at high repetition rates (up to 250 kHz) while using input pulse energies down to 3 $mu$J. We demonstrate these unique capabilities by simultaneously capturing the energy and momentum resolved dynamics in two well-separated momentum space regions of a charge density wave material ErTe$_3$. This novel setup offers opportunity to study the non-equilibrium band structure of solids with exceptional energy and time resolutions at high repetition rates.



rate research

Read More

89 - Yu He , Inna Vishik , Ming Yi 2015
We developed a table-top vacuum ultraviolet (VUV) laser with $113.778$nm wavelength (10.897eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10MHz, provides a flux of 2$times$10$^{12}$ photons/second, and enables photoemission with energy and momentum resolutions better than 2meV and 0.012AA$^{-1}$, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2meV. The setup reaches electron momenta up to 1.2AA$^{-1}$, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source, and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors and iron-based superconductors.
The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few and single layer forms of ReS$_2$ is of particular interest, due to its comparatively weak inter-planar interaction. However, the degree of inter-layer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS$_2$ using high resolution angle resolved photoemission spectroscopy (ARPES). We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 $m_e$) than along them (1.6 $m_e$), in good agreement with density functional theory calculations. An appreciable inter-plane interaction results in an experimentally-measured difference of ~100-200 meV between the valence band maxima at the Z point (0,0,1/2) and the $Gamma$ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at $Gamma$, implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the direct or indirect gap nature of this material.
We combined a spin-resolved photoemission spectrometer with a high-harmonic generation (HHG) laser source in order to perform spin-, time- and angle-resolved photoemission spectroscopy (STARPES) experiments on the transition metal dichalcogenide bulk WTe$_2$, a possible Weyl type-II semimetal. Measurements at different femtosecond pump-probe delays and comparison with spin-resolved one-step photoemission calculations provide insight into the spin polarization of electrons above the Fermi level in the region where Weyl points of WTe$_2$ are expected. We observe a spin accumulation above the Weyl points region, that is consistent with a spin-selective bottleneck effect due to the presence of spin polarized cone-like electronic structure. Our results support the feasibility of STARPES with HHG, which despite being experimentally challenging provides a unique way to study spin dynamics in photoemission.
Time- and angle-resolved photoemission spectroscopy is a powerful probe of electronic band structures out of equilibrium. Tuning time and energy resolution to suit a particular scientific question has become an increasingly important experimental consideration. Many instruments use cascaded frequency doubling in nonlinear crystals to generate the required ultraviolet probe pulses. We demonstrate how calculations clarify the relationship between laser bandwidth and nonlinear crystal thickness contributing to experimental resolutions and place intrinsic limits on the achievable time-bandwidth product. Experimentally, we tune time and energy resolution by varying the thickness of nonlinear $beta$-BaB$_2$O$_4$ crystals for frequency up-conversion, providing for a flexible experiment design. We achieve time resolutions of 58 to 103 fs and corresponding energy resolutions of 55 to 27 meV.
WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا