Do you want to publish a course? Click here

How mergers magnetise massive stars

67   0   0.0 ( 0 )
 Added by Fabian Schneider
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic fields are ubiquitous in the Universe. The Suns magnetic field drives the solar wind and causes solar flares and other energetic surface phenomena that profoundly affect space weather here on Earth. The first magnetic field in a star other than the Sun was detected in 1947 in the peculiar A-type star 78 Vir. It is now known that the magnetic fields of the Sun and other low-mass stars (<1.5 solar masses) are generated in-situ by a dynamo process in their turbulent, convective envelopes. Unlike such stars, intermediate-mass and high-mass stars (>1.5 solar masses; referred to as massive stars here) have relatively quiet, radiative envelopes where a solar-like dynamo cannot operate. However, about 10% of them, including 78 Vir, have strong, large-scale surface magnetic fields whose origin has remained a major mystery. The massive star $tau$ Sco is a prominent member of this group and appears to be surprisingly young compared to other presumably coeval members of the Upper Scorpius association. Here, we present the first 3D magneto-hydrodynamical simulations of the coalescence of two massive main-sequence stars and 1D stellar evolution computations of the subsequent evolution of the merger product that can explain $tau$ Scos magnetic field, apparent youth and other observed characteristics. We argue that field amplification in stellar mergers is a general mechanism to form strongly-magnetised massive stars. These stars are promising progenitors of those neutron stars that host the strongest magnetic fields in the Universe, so-called magnetars, and that may give rise to some of the enigmatic fast radio bursts. Strong magnetic fields affect the explosions of core-collapse supernovae and, moreover, those magnetic stars that have rapidly-rotating cores at the end of their lives might provide the right conditions to power long-duration gamma-ray bursts and super-luminous supernovae.



rate research

Read More

The pressure exerted by massive stars radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially-important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform three-dimensional radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the stellar system via gravitational and Rayleigh-Taylor (RT) instabilities, in agreement with previous results using stars capable of moving, but in disagreement with methods where the star is held fixed or with simulations that do not adequately resolve the development of RT instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of instability, but does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. Our results suggest that RT features are significant and should be present around accreting massive stars throughout their formation.
The recent discovery of high-redshift (z > 6) supermassive black holes (SMBH) favors the formation of massive seed BHs in protogalaxies. One possible scenario is formation of massive stars ~ 1e3-1e4 Msun via runaway stellar collisions in a dense cluster, leaving behind massive BHs without significant mass loss. We study the pulsational instability of massive stars with the zero-age main-sequence (ZAMS) mass Mzams/Msun = 300-3000 and metallicity Z/Zsun = 0-0.1, and discuss whether or not pulsation-driven mass loss prevents massive BH formation. In the MS phase, the pulsational instability excited by the epsilon-mechanism grows in ~ 1e3 yrs. As the stellar mass and metallicity increase, the mass-loss rate increases to < 1e-3 Msun/yr. In the red super-giant (RSG) phase, the instability is excited by the kappa-mechanism operating in the hydrogen ionization zone and grows more rapidly in ~ 10 yrs. The RSG mass-loss rate is almost independent of metallicity and distributes in the range of ~ 1e-3-1e-2 Msun/yr. Conducting the stellar structure calculations including feedback due to pulsation-driven winds, we find that the stellar models of Mzams/Msun = 300-3000 can leave behind remnant BHs more massive than ~ 200-1200 Msun. We conclude that massive merger products can seed monster SMBHs observed at z > 6.
Rotation is thought to be a major factor in the evolution of massive stars, especially at low metallicity, with consequences for their chemical yields, ionizing flux and final fate. Determining the natal rotation-rate distribution of stars is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local Universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20^+5_-10% of all massive main-sequence stars have projected rotational velocities in excess of 200km/s. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.
We consider the effects of an outflow on radiation escaping from the infalling envelope around a massive protostar. Using numerical radiative transfer calculations, we show that outflows with properties comparable to those observed around massive stars lead to significant anisotropy in the stellar radiation field, which greatly reduces the radiation pressure experienced by gas in the infalling envelope. This means that radiation pressure is a much less significant barrier to massive star formation than has previously been thought.
Massive stars are powerful sources of radiation, stellar winds, and supernova explosions. The radiative and mechanical energies injected by massive stars into the interstellar medium (ISM) profoundly alter the structure and evolution of the ISM, which subsequently influences the star formation and chemical evolution of the host galaxy. In this review, we will use the Large Magellanic Cloud (LMC) as a laboratory to showcase effects of energy feedback from massive young stellar objects (YSOs) and mature stars. We will also use the Carina Nebula in the Galaxy to illustrate a multi-wavelength study of feedback from massive star.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا